All functions

ci_p()

Confidence intervals for Binomial proportions

ci_p_add_4()

Add-4 Wald-t Confidence Interval for Binomial Proportion

ci_p_agresti_coull()

Agresti-Coull confidence interval for Binomial proportion

ci_p_arcsine()

ArcoSeno confidence interval for Binomial proportion

ci_p_arcsine_ac()

Arcsine Wald Confidence Interval with Continuity Correction Anscombe for Binomial Proportion

ci_p_arcsine_cc()

Arcsine Wald Confidence Interval with Continuity Correction for Binomial Proportion

ci_p_clopper_pearson()

Clopper-Pearson confidence interval for Binomial proportion

ci_p_coverage()

Coverage for interval confidence p

ci_p_coverage_plot()

Coverage for interval confidence p

ci_p_hpd_jeffreys()

Highest Posterior Density (HPD) interval for Binomial proportion using Jeffreys prior

ci_p_jeffreys()

Bayesian confidence interval for Binomial proportion using Jeffreys prior (non-informative prior).

ci_p_rindskopf()

Rindskopf confidence interval for Binomial proportion

ci_p_wald()

Wald confidence interval for Binomial proportion

ci_p_wilson()

Wilson confidence interval for Binomial proportion

d.meantest()

D-value for hypothesis test using vectors

d_meantest()

D-value for hypothesis test using values

mult_var_matrices_test()

Tests for homogeneity of covariances matrices

one_covar_matrix_test()

Test for \(\Sigma\) in a \(Np(\mu, \Sigma)\)

one_mean_vector_test()

Test for \(\mu\) in a \(Np(\mu, \Sigma)\)

plot(<htest>)

To plot p-value area

shade.dist()

Shade for continuous distributions

shade.norm() shade.t() shade.F() shade.chi()

Shading functions for interpretation of pdf probabilities

two_mean_vector_test()

Tests for Equality of Two Normal Mean Vectors

t_test()

Student's t-Test using values

var.test()

Variance test using vectors

var_test()

Variance test using values

z.test()

Mean test using vector

z_test()

Mean test using values