This function calculates the confidence interval for a proportion. It is vectorized, allowing users to evaluate it using either single values or vectors.

ci_p_add_4(x, n, conf.level = 0.95)

Arguments

x

A number or a vector with the number of successes.

n

A number or a vector with the number of trials.

conf.level

Confidence level for the returned confidence interval. By default, it is 0.95.

Value

A vector with the lower and upper limits of the confidence interval.

Details

The Add-4 Wald-t confidence interval improves the performance of the Wald interval by adding 2 successes and 2 failures to the observed data, effectively modifying the estimated proportion:

$$\hat{p}=\frac{x + 2}{n + 4}.$$

The variance \(V(\hat{p}, n+4)\) is given by:

$$V(\hat{p}, n+4)=\frac{\hat{p}(1 - \hat{p})}{n + 4}.$$

The degrees of freedom \(\nu\) are calculated using equation (2.9):

$$\nu=\frac{2 V(\hat{p}, n+4)^2}{\Omega(\hat{p}, n+4)},$$

where \(\Omega(\hat{p}, n+4)\) is defined as:

$$\Omega(p, n)=\frac{p - p^2}{n^3} + \frac{p + (6n - 7)p^2 + 4(n - 1)(n - 3)p^3 - 2(n - 1)(2n - 3)p^4}{n^5} - \frac{2(p + (2n - 3)p^2 - 2(n - 1)p^3)}{n^4}.$$

The confidence interval is then calculated as:

$$\text{Lower}=\hat{p} - t \cdot \sqrt{\frac{\tilde{\pi}(1 - \hat{p})}{n+4}},$$ $$\text{Upper}=\hat{p} + t \cdot \sqrt{\frac{\tilde{\pi}(1 - \hat{p})}{n+4}},$$

where \(t\) is the critical value from the t-distribution with \(\nu\) degrees of freedom.

References

Pan, W. (2002). Approximate confidence intervals for one proportion and difference of two proportions. Computational Statistics and Data Analysis, 40(1), 143–157

See also

Author

David Esteban Cartagena Mejía, dcartagena@unal.edu.co

Examples

ci_p_add_4(x=15, n=50, conf.level=0.95)
#>           [,1]
#> [1,] 0.1900327
#> [2,] 0.4395970
ci_p_add_4(x=0,  n=50, conf.level=0.95)
#>           [,1]
#> [1,] 0.0000000
#> [2,] 0.1045923
ci_p_add_4(x=50, n=50, conf.level=0.95)
#>           [,1]
#> [1,] 0.8954077
#> [2,] 1.0000000