This function obtains the confidence interval for a proportion.
ci_p(x, n, conf.level = 0.95, intervalType = "wald")
a number or a vector with the number of successes.
a number or a vector with the number of trials.
confidence level for the returned confidence interval. By default is 0.95.
type of confidence interval, possible choices are: "wald", "agresti_coull", "rindskopf", "clopper_pearson", "add_4", "arcsine_cc", "arcsine", "arcsine_ac", "wilson", "ci_p_jeffreys", "hpd_jeffreys", "LRT", "mid_p", "agresti_caffo", "score_cc", "wald_cc", "wald_recentered", "wald_recentered_cc",
A dataframe with the input information and the confidence interval.
ci_p_wald, ci_p_agresti_coull, ci_p_rindskopf, ci_p_clopper_pearson, ci_p_add_4, ci_p_arcsine_cc, ci_p_arcsine, ci_p_arcsine_ac, ci_p_wilson, ci_p_jeffreys, ci_p_hpd_jeffreys ci_p_mid_p, ci_p_agresti_caffo, ci_p_score_cc, ci_p_wald_cc, ci_p_wald_recentered, ci_p_wald_recentered_cc, ci_p_wald_t, ci_p_wald_bs
# Examples for alternative IC
ci_p(x=5, n=15, intervalType="wald", conf.level=0.90)
#> x n proportion lower upper conf.level
#> 1 5 15 0.3333333 0.1331281 0.5335385 0.9
ci_p(x=5, n=15, intervalType="agresti_coull", conf.level=0.90)
#> x n proportion lower upper conf.level
#> 1 5 15 0.3333333 0.1863938 0.5504483 0.9
ci_p(x=5, n=15, intervalType="rindskopf", conf.level=0.90)
#> x n proportion lower upper conf.level
#> 1 5 15 0.3333333 0.1805812 0.5545718 0.9
ci_p(x=5, n=15, intervalType="clopper_pearson", conf.level=0.90)
#> x n proportion lower upper conf.level
#> 1 5 15 0.3333333 0.141664 0.5774437 0.9
ci_p(x=5, n=15, intervalType="arcsine_cc", conf.level=0.90)
#> x n proportion lower upper conf.level
#> lower 5 15 0.3333333 0.1289439 0.5770747 0.9
ci_p(x=5, n=15, intervalType="arcsine", conf.level=0.90)
#> x n proportion lower upper conf.level
#> 1 5 15 0.3333333 0.1538988 0.5423803 0.9
# Examples for multiple values
ci_p(x=c(5, 7, 9),
n=c(15, 17, 19),
intervalType="wald",
conf.level=c(0.90, 0.95, 0.97))
#> x n proportion lower upper conf.level
#> 1 5 15 0.3333333 0.1331281 0.5335385 0.90
#> 2 7 17 0.4117647 0.1778143 0.6457151 0.95
#> 3 9 19 0.4736842 0.2251028 0.7222656 0.97