This function calculates the confidence interval for a proportion. It is vectorized, allowing users to evaluate it using either single values or vectors.

ci_p_clopper_pearson(x, n, conf.level = 0.95)

Arguments

x

A number or a vector with the number of successes.

n

A number or a vector with the number of trials.

conf.level

Confidence level for the returned confidence interval. By default, it is 0.95.

Value

A vector with the lower and upper limits.

Details

The Clopper-Pearson interval is an exact confidence interval for the Binomial proportion \(p\). The limits of the interval are derived based on the Beta distribution. For the special cases where \(x=0\) or \(x=n\), the limits are calculated directly.

The mathematical definitions are as follows:

- If \(x=0\), the lower limit is \(0\), and the upper limit is \(1 - (\alpha / 2)^{1/n}\).

- If \(x=n\), the lower limit is \((\alpha / 2)^{1/n}\), and the upper limit is \(1\).

Otherwise, the limits are given by:

$$\text{Lower Limit}=B_{1-\alpha/2, x, n-x+1}$$

$$\text{Upper Limit}=B_{\alpha/2, x+1, n-x}$$

where \(B_{\omega, a, b}\) is the \(100\%(1-\omega)\) percentile of the Beta distribution with parameters \(a\) and \(b\).

Due to the relationship between Beta and F distributions, the limits can be written as:

$$\text{Lower Limit}=\frac{1}{1+\frac{n-x+1}{x}F_{\alpha/2, \, 2(n-x+1), \, 2x}}$$

$$\text{Upper Limit}=\frac{\frac{x+1}{n-x} F_{\alpha/2, \, 2(x+1), \, 2(n-x)}}{1+\frac{x+1}{n-x} F_{\alpha/2, \, 2(x+1), \, 2(n-x)}}$$

where \(F_{\omega, a, b}\) is the \(100\%(1-\omega)\) percentile of the F distribution with parameters \(a\) and \(b\).

References

Clopper, C. J., & Pearson, E. S. (1934). The use of confidence or fiducial limits illustrated in the case of the binomial. Biometrika, 26(4), 404-413.

See also

Author

Omar David Mercado Turizo, omercado@unal.edu.co

Examples

ci_p_clopper_pearson(x=15, n=50, conf.level=0.95)
#>           [,1]
#> [1,] 0.1786178
#> [2,] 0.4460823