This function calculates the Highest Posterior Density (HPD) interval for a Binomial proportion using a Bayesian approach. It is vectorized, allowing the evaluation of single values or vectors.
ci_p_hpd(x, n, conf.level = 0.95, prior = "uniform")
A vector with the lower and upper limits.
The HPD interval is a Bayesian credible interval for the Binomial proportion \(p\). The posterior distribution is calculated based on the Beta prior:
- "uniform": \(\text{Beta}(1, 1)\).
- "jeffreys": \(\text{Beta}(0.5, 0.5)\).
The limits of the interval are computed using the quantiles of the Beta posterior distribution:
- Lower limit: \(\text{qbeta}((1 - \text{conf.level}) / 2, \alpha + x, \beta + n - x)\).
- Upper limit: \(\text{qbeta}(1 - (1 - \text{conf.level}) / 2, \alpha + x, \beta + n - x)\).
Missing reference.
ci_p.
# Example with a single value
ci_p_hpd(x = 15, n = 50, conf.level = 0.95)
#> [,1]
#> [1,] 0.1911040
#> [2,] 0.4382887