This function plots the coverage for any confidence interval for p.

ci_p_coverage_plot(
  n,
  conf.level = 0.95,
  intervalType = "wald",
  plot = TRUE,
  seq_p = seq(from = 0.01, to = 0.99, length.out = 50),
  col = "deepskyblue2",
  linecolor = "tomato",
  ...
)

Arguments

n

number of trials.

conf.level

nominal confidence level for the returned confidence interval. By default is 0.95.

intervalType

type of confidence interval, possible choices are listed in ci_p.

plot

logical value to obtain the plot, TRUE by default.

seq_p

sequence for the values of \(n\). By default is seq(from=0.01, to=0.99, length.out=50).

col

color for the coverage curve.

linecolor

color for the line representing the conf.level.

...

further arguments and graphical parameters passed to plot function.

Value

A dataframe with Method, n, p and true coverage and the plot.

Details

This function was inspired by the binomTestCoveragePlot() function from conf package and Park & Leemis (2019).

References

Park, H., & Leemis, L. M. (2019). Ensemble confidence intervals for binomial proportions. Statistics in Medicine, 38(18), 3460-3475.

See also

Author

David Esteban Cartagena Mejía, dcartagena@unal.edu.co

Examples

ci_p_coverage_plot(n=10,
                   intervalType="wald",
                   conf.level=0.95,
                   ylim=c(0.8, 1), las=1)

#>    intervalType  n    p   coverage
#> 1     ci_p_wald 10 0.01 0.09550408
#> 2     ci_p_wald 10 0.03  0.2624288
#> 3     ci_p_wald 10 0.05  0.4002346
#> 4     ci_p_wald 10 0.07  0.5124416
#> 5     ci_p_wald 10 0.09  0.6017501
#> 6     ci_p_wald 10 0.11  0.6856658
#> 7     ci_p_wald 10 0.13  0.7462799
#> 8     ci_p_wald 10 0.15  0.7932515
#> 9     ci_p_wald 10 0.17  0.8280358
#> 10    ci_p_wald 10 0.19  0.8517909
#> 11    ci_p_wald 10 0.21  0.8971237
#> 12    ci_p_wald 10 0.23  0.9137165
#> 13    ci_p_wald 10 0.25  0.9239588
#> 14    ci_p_wald 10 0.27  0.9283013
#> 15    ci_p_wald 10 0.29  0.7940937
#> 16    ci_p_wald 10 0.31  0.8527729
#> 17    ci_p_wald 10 0.33  0.8734411
#> 18    ci_p_wald 10 0.35  0.8880213
#> 19    ci_p_wald 10 0.37  0.8966804
#> 20    ci_p_wald 10 0.39  0.8995645
#> 21    ci_p_wald 10 0.41  0.8967987
#> 22    ci_p_wald 10 0.43  0.9488988
#> 23    ci_p_wald 10 0.45  0.8730485
#> 24    ci_p_wald 10 0.47   0.884297
#> 25    ci_p_wald 10 0.49  0.8899219
#> 26    ci_p_wald 10 0.51  0.8899219
#> 27    ci_p_wald 10 0.53   0.884297
#> 28    ci_p_wald 10 0.55  0.8730485
#> 29    ci_p_wald 10 0.57  0.9488988
#> 30    ci_p_wald 10 0.59  0.8967987
#> 31    ci_p_wald 10 0.61  0.8995645
#> 32    ci_p_wald 10 0.63  0.8966804
#> 33    ci_p_wald 10 0.65  0.8880213
#> 34    ci_p_wald 10 0.67  0.8734411
#> 35    ci_p_wald 10 0.69  0.8527729
#> 36    ci_p_wald 10 0.71  0.7940937
#> 37    ci_p_wald 10 0.73  0.9283013
#> 38    ci_p_wald 10 0.75  0.9239588
#> 39    ci_p_wald 10 0.77  0.9137165
#> 40    ci_p_wald 10 0.79  0.8971237
#> 41    ci_p_wald 10 0.81  0.8517909
#> 42    ci_p_wald 10 0.83  0.8280358
#> 43    ci_p_wald 10 0.85  0.7932515
#> 44    ci_p_wald 10 0.87  0.7462799
#> 45    ci_p_wald 10 0.89  0.6856658
#> 46    ci_p_wald 10 0.91  0.6017501
#> 47    ci_p_wald 10 0.93  0.5124416
#> 48    ci_p_wald 10 0.95  0.4002346
#> 49    ci_p_wald 10 0.97  0.2624288
#> 50    ci_p_wald 10 0.99 0.09550408

ci_p_coverage_plot(n=10,
                   intervalType="clopper_pearson",
                   conf.level=0.95,
                   ylim=c(0.9, 1), las=1)

#>            intervalType  n    p  coverage
#> 1  ci_p_clopper_pearson 10 0.01 0.9957338
#> 2  ci_p_clopper_pearson 10 0.03 0.9972351
#> 3  ci_p_clopper_pearson 10 0.05 0.9884964
#> 4  ci_p_clopper_pearson 10 0.07 0.9964239
#> 5  ci_p_clopper_pearson 10 0.09 0.9911662
#> 6  ci_p_clopper_pearson 10 0.11 0.9822028
#> 7  ci_p_clopper_pearson 10 0.13 0.9947033
#> 8  ci_p_clopper_pearson 10 0.15 0.9901259
#> 9  ci_p_clopper_pearson 10 0.17 0.9831962
#> 10 ci_p_clopper_pearson 10 0.19 0.9951243
#> 11 ci_p_clopper_pearson 10 0.21 0.9918065
#> 12 ci_p_clopper_pearson 10 0.23 0.9869833
#> 13 ci_p_clopper_pearson 10 0.25 0.9802723
#> 14 ci_p_clopper_pearson 10 0.27 0.9943819
#> 15 ci_p_clopper_pearson 10 0.29 0.9913493
#> 16 ci_p_clopper_pearson 10 0.31 0.9626744
#> 17 ci_p_clopper_pearson 10 0.33 0.9632227
#> 18 ci_p_clopper_pearson 10 0.35  0.981716
#> 19 ci_p_clopper_pearson 10 0.37 0.9830104
#> 20 ci_p_clopper_pearson 10 0.39 0.9825503
#> 21 ci_p_clopper_pearson 10 0.41 0.9803151
#> 22 ci_p_clopper_pearson 10 0.43   0.97621
#> 23 ci_p_clopper_pearson 10 0.45 0.9722406
#> 24 ci_p_clopper_pearson 10 0.47 0.9762849
#> 25 ci_p_clopper_pearson 10 0.49 0.9782693
#> 26 ci_p_clopper_pearson 10 0.51 0.9782693
#> 27 ci_p_clopper_pearson 10 0.53 0.9762849
#> 28 ci_p_clopper_pearson 10 0.55 0.9722406
#> 29 ci_p_clopper_pearson 10 0.57   0.97621
#> 30 ci_p_clopper_pearson 10 0.59 0.9803151
#> 31 ci_p_clopper_pearson 10 0.61 0.9825503
#> 32 ci_p_clopper_pearson 10 0.63 0.9830104
#> 33 ci_p_clopper_pearson 10 0.65  0.981716
#> 34 ci_p_clopper_pearson 10 0.67 0.9632227
#> 35 ci_p_clopper_pearson 10 0.69 0.9626744
#> 36 ci_p_clopper_pearson 10 0.71 0.9913493
#> 37 ci_p_clopper_pearson 10 0.73 0.9943819
#> 38 ci_p_clopper_pearson 10 0.75 0.9802723
#> 39 ci_p_clopper_pearson 10 0.77 0.9869833
#> 40 ci_p_clopper_pearson 10 0.79 0.9918065
#> 41 ci_p_clopper_pearson 10 0.81 0.9951243
#> 42 ci_p_clopper_pearson 10 0.83 0.9831962
#> 43 ci_p_clopper_pearson 10 0.85 0.9901259
#> 44 ci_p_clopper_pearson 10 0.87 0.9947033
#> 45 ci_p_clopper_pearson 10 0.89 0.9822028
#> 46 ci_p_clopper_pearson 10 0.91 0.9911662
#> 47 ci_p_clopper_pearson 10 0.93 0.9964239
#> 48 ci_p_clopper_pearson 10 0.95 0.9884964
#> 49 ci_p_clopper_pearson 10 0.97 0.9972351
#> 50 ci_p_clopper_pearson 10 0.99 0.9957338

ci_p_coverage_plot(n=10,
                   intervalType="wilson",
                   conf.level=0.95,
                   ylim=c(0.9, 1), las=1)

#>    intervalType  n    p  coverage
#> 1   ci_p_wilson 10 0.01 0.9043821
#> 2   ci_p_wilson 10 0.03 0.9654934
#> 3   ci_p_wilson 10 0.05 0.9138616
#> 4   ci_p_wilson 10 0.07 0.9716579
#> 5   ci_p_wilson 10 0.09   0.94596
#> 6   ci_p_wilson 10 0.11 0.9822028
#> 7   ci_p_wilson 10 0.13 0.9686952
#> 8   ci_p_wilson 10 0.15 0.9500302
#> 9   ci_p_wilson 10 0.17 0.9831962
#> 10  ci_p_wilson 10 0.19 0.9733675
#> 11  ci_p_wilson 10 0.21 0.9601376
#> 12  ci_p_wilson 10 0.23 0.9430804
#> 13  ci_p_wilson 10 0.25 0.9802723
#> 14  ci_p_wilson 10 0.27 0.9712776
#> 15  ci_p_wilson 10 0.29 0.9270544
#> 16  ci_p_wilson 10 0.31 0.9204284
#> 17  ci_p_wilson 10 0.33 0.9632227
#> 18  ci_p_wilson 10 0.35  0.960513
#> 19  ci_p_wilson 10 0.37 0.9545255
#> 20  ci_p_wilson 10 0.39 0.9451717
#> 21  ci_p_wilson 10 0.41 0.9447968
#> 22  ci_p_wilson 10 0.43 0.9488988
#> 23  ci_p_wilson 10 0.45 0.9493511
#> 24  ci_p_wilson 10 0.47 0.9461862
#> 25  ci_p_wilson 10 0.49 0.9393719
#> 26  ci_p_wilson 10 0.51 0.9393719
#> 27  ci_p_wilson 10 0.53 0.9461862
#> 28  ci_p_wilson 10 0.55 0.9493511
#> 29  ci_p_wilson 10 0.57 0.9488988
#> 30  ci_p_wilson 10 0.59 0.9447968
#> 31  ci_p_wilson 10 0.61 0.9451717
#> 32  ci_p_wilson 10 0.63 0.9545255
#> 33  ci_p_wilson 10 0.65  0.960513
#> 34  ci_p_wilson 10 0.67 0.9632227
#> 35  ci_p_wilson 10 0.69 0.9204284
#> 36  ci_p_wilson 10 0.71 0.9270544
#> 37  ci_p_wilson 10 0.73 0.9712776
#> 38  ci_p_wilson 10 0.75 0.9802723
#> 39  ci_p_wilson 10 0.77 0.9430804
#> 40  ci_p_wilson 10 0.79 0.9601376
#> 41  ci_p_wilson 10 0.81 0.9733675
#> 42  ci_p_wilson 10 0.83 0.9831962
#> 43  ci_p_wilson 10 0.85 0.9500302
#> 44  ci_p_wilson 10 0.87 0.9686952
#> 45  ci_p_wilson 10 0.89 0.9822028
#> 46  ci_p_wilson 10 0.91   0.94596
#> 47  ci_p_wilson 10 0.93 0.9716579
#> 48  ci_p_wilson 10 0.95 0.9138616
#> 49  ci_p_wilson 10 0.97 0.9654934
#> 50  ci_p_wilson 10 0.99 0.9043821

ci_p_coverage_plot(n=10,
                   intervalType="jeffreys",
                   conf.level=0.95,
                   ylim=c(0.9, 1), las=1)

#>     intervalType  n    p  coverage
#> 1  ci_p_jeffreys 10 0.01 0.9043821
#> 2  ci_p_jeffreys 10 0.03 0.9654934
#> 3  ci_p_jeffreys 10 0.05 0.9884964
#> 4  ci_p_jeffreys 10 0.07 0.9716579
#> 5  ci_p_jeffreys 10 0.09   0.94596
#> 6  ci_p_jeffreys 10 0.11 0.9822028
#> 7  ci_p_jeffreys 10 0.13 0.9686952
#> 8  ci_p_jeffreys 10 0.15 0.9500302
#> 9  ci_p_jeffreys 10 0.17 0.9831962
#> 10 ci_p_jeffreys 10 0.19 0.9733675
#> 11 ci_p_jeffreys 10 0.21 0.9601376
#> 12 ci_p_jeffreys 10 0.23 0.9137165
#> 13 ci_p_jeffreys 10 0.25 0.9239588
#> 14 ci_p_jeffreys 10 0.27 0.9283013
#> 15 ci_p_jeffreys 10 0.29 0.9270544
#> 16 ci_p_jeffreys 10 0.31 0.9626744
#> 17 ci_p_jeffreys 10 0.33 0.9632227
#> 18 ci_p_jeffreys 10 0.35  0.960513
#> 19 ci_p_jeffreys 10 0.37 0.9545255
#> 20 ci_p_jeffreys 10 0.39 0.8995645
#> 21 ci_p_jeffreys 10 0.41 0.9447968
#> 22 ci_p_jeffreys 10 0.43 0.9488988
#> 23 ci_p_jeffreys 10 0.45 0.9493511
#> 24 ci_p_jeffreys 10 0.47 0.9461862
#> 25 ci_p_jeffreys 10 0.49 0.9393719
#> 26 ci_p_jeffreys 10 0.51 0.9393719
#> 27 ci_p_jeffreys 10 0.53 0.9461862
#> 28 ci_p_jeffreys 10 0.55 0.9493511
#> 29 ci_p_jeffreys 10 0.57 0.9488988
#> 30 ci_p_jeffreys 10 0.59 0.9447968
#> 31 ci_p_jeffreys 10 0.61 0.8995645
#> 32 ci_p_jeffreys 10 0.63 0.9545255
#> 33 ci_p_jeffreys 10 0.65  0.960513
#> 34 ci_p_jeffreys 10 0.67 0.9632227
#> 35 ci_p_jeffreys 10 0.69 0.9626744
#> 36 ci_p_jeffreys 10 0.71 0.9270544
#> 37 ci_p_jeffreys 10 0.73 0.9283013
#> 38 ci_p_jeffreys 10 0.75 0.9239588
#> 39 ci_p_jeffreys 10 0.77 0.9137165
#> 40 ci_p_jeffreys 10 0.79 0.9601376
#> 41 ci_p_jeffreys 10 0.81 0.9733675
#> 42 ci_p_jeffreys 10 0.83 0.9831962
#> 43 ci_p_jeffreys 10 0.85 0.9500302
#> 44 ci_p_jeffreys 10 0.87 0.9686952
#> 45 ci_p_jeffreys 10 0.89 0.9822028
#> 46 ci_p_jeffreys 10 0.91   0.94596
#> 47 ci_p_jeffreys 10 0.93 0.9716579
#> 48 ci_p_jeffreys 10 0.95 0.9884964
#> 49 ci_p_jeffreys 10 0.97 0.9654934
#> 50 ci_p_jeffreys 10 0.99 0.9043821

ci_p_coverage_plot(n=10,
                   intervalType="agresti_coull",
                   conf.level=0.95,
                   ylim=c(0.9, 1), las=1)

#>          intervalType  n    p  coverage
#> 1  ci_p_agresti_coull 10 0.01 0.9957338
#> 2  ci_p_agresti_coull 10 0.03 0.9654934
#> 3  ci_p_agresti_coull 10 0.05 0.9884964
#> 4  ci_p_agresti_coull 10 0.07 0.9716579
#> 5  ci_p_agresti_coull 10 0.09   0.94596
#> 6  ci_p_agresti_coull 10 0.11 0.9822028
#> 7  ci_p_agresti_coull 10 0.13 0.9686952
#> 8  ci_p_agresti_coull 10 0.15 0.9500302
#> 9  ci_p_agresti_coull 10 0.17 0.9831962
#> 10 ci_p_agresti_coull 10 0.19 0.9733675
#> 11 ci_p_agresti_coull 10 0.21 0.9601376
#> 12 ci_p_agresti_coull 10 0.23 0.9430804
#> 13 ci_p_agresti_coull 10 0.25 0.9802723
#> 14 ci_p_agresti_coull 10 0.27 0.9712776
#> 15 ci_p_agresti_coull 10 0.29 0.9596068
#> 16 ci_p_agresti_coull 10 0.31 0.9448903
#> 17 ci_p_agresti_coull 10 0.33 0.9632227
#> 18 ci_p_agresti_coull 10 0.35  0.960513
#> 19 ci_p_agresti_coull 10 0.37 0.9545255
#> 20 ci_p_agresti_coull 10 0.39 0.9451717
#> 21 ci_p_agresti_coull 10 0.41 0.9803151
#> 22 ci_p_agresti_coull 10 0.43 0.9488988
#> 23 ci_p_agresti_coull 10 0.45 0.9493511
#> 24 ci_p_agresti_coull 10 0.47 0.9461862
#> 25 ci_p_agresti_coull 10 0.49 0.9782693
#> 26 ci_p_agresti_coull 10 0.51 0.9782693
#> 27 ci_p_agresti_coull 10 0.53 0.9461862
#> 28 ci_p_agresti_coull 10 0.55 0.9493511
#> 29 ci_p_agresti_coull 10 0.57 0.9488988
#> 30 ci_p_agresti_coull 10 0.59 0.9803151
#> 31 ci_p_agresti_coull 10 0.61 0.9451717
#> 32 ci_p_agresti_coull 10 0.63 0.9545255
#> 33 ci_p_agresti_coull 10 0.65  0.960513
#> 34 ci_p_agresti_coull 10 0.67 0.9632227
#> 35 ci_p_agresti_coull 10 0.69 0.9448903
#> 36 ci_p_agresti_coull 10 0.71 0.9596068
#> 37 ci_p_agresti_coull 10 0.73 0.9712776
#> 38 ci_p_agresti_coull 10 0.75 0.9802723
#> 39 ci_p_agresti_coull 10 0.77 0.9430804
#> 40 ci_p_agresti_coull 10 0.79 0.9601376
#> 41 ci_p_agresti_coull 10 0.81 0.9733675
#> 42 ci_p_agresti_coull 10 0.83 0.9831962
#> 43 ci_p_agresti_coull 10 0.85 0.9500302
#> 44 ci_p_agresti_coull 10 0.87 0.9686952
#> 45 ci_p_agresti_coull 10 0.89 0.9822028
#> 46 ci_p_agresti_coull 10 0.91   0.94596
#> 47 ci_p_agresti_coull 10 0.93 0.9716579
#> 48 ci_p_agresti_coull 10 0.95 0.9884964
#> 49 ci_p_agresti_coull 10 0.97 0.9654934
#> 50 ci_p_agresti_coull 10 0.99 0.9957338

ci_p_coverage_plot(n=10,
                   intervalType="arcsine",
                   conf.level=0.95,
                   ylim=c(0.9, 1), las=1)

#>    intervalType  n    p  coverage
#> 1  ci_p_arcsine 10 0.01 0.9957338
#> 2  ci_p_arcsine 10 0.03 0.9972351
#> 3  ci_p_arcsine 10 0.05 0.9884964
#> 4  ci_p_arcsine 10 0.07 0.9716579
#> 5  ci_p_arcsine 10 0.09 0.9911662
#> 6  ci_p_arcsine 10 0.11 0.6703856
#> 7  ci_p_arcsine 10 0.13 0.7202718
#> 8  ci_p_arcsine 10 0.15 0.7932515
#> 9  ci_p_arcsine 10 0.17 0.8280358
#> 10 ci_p_arcsine 10 0.19 0.8517909
#> 11 ci_p_arcsine 10 0.21 0.8971237
#> 12 ci_p_arcsine 10 0.23 0.9137165
#> 13 ci_p_arcsine 10 0.25 0.9239588
#> 14 ci_p_arcsine 10 0.27 0.9283013
#> 15 ci_p_arcsine 10 0.29 0.9270544
#> 16 ci_p_arcsine 10 0.31 0.9626744
#> 17 ci_p_arcsine 10 0.33 0.9632227
#> 18 ci_p_arcsine 10 0.35 0.8880213
#> 19 ci_p_arcsine 10 0.37 0.8966804
#> 20 ci_p_arcsine 10 0.39 0.8995645
#> 21 ci_p_arcsine 10 0.41 0.9447968
#> 22 ci_p_arcsine 10 0.43 0.9488988
#> 23 ci_p_arcsine 10 0.45 0.9493511
#> 24 ci_p_arcsine 10 0.47 0.9461862
#> 25 ci_p_arcsine 10 0.49 0.8899219
#> 26 ci_p_arcsine 10 0.51 0.8899219
#> 27 ci_p_arcsine 10 0.53 0.9461862
#> 28 ci_p_arcsine 10 0.55 0.9493511
#> 29 ci_p_arcsine 10 0.57 0.9488988
#> 30 ci_p_arcsine 10 0.59 0.9447968
#> 31 ci_p_arcsine 10 0.61 0.8995645
#> 32 ci_p_arcsine 10 0.63 0.8966804
#> 33 ci_p_arcsine 10 0.65 0.8880213
#> 34 ci_p_arcsine 10 0.67 0.9632227
#> 35 ci_p_arcsine 10 0.69 0.9626744
#> 36 ci_p_arcsine 10 0.71 0.9270544
#> 37 ci_p_arcsine 10 0.73 0.9283013
#> 38 ci_p_arcsine 10 0.75 0.9239588
#> 39 ci_p_arcsine 10 0.77 0.9137165
#> 40 ci_p_arcsine 10 0.79 0.8971237
#> 41 ci_p_arcsine 10 0.81 0.8517909
#> 42 ci_p_arcsine 10 0.83 0.8280358
#> 43 ci_p_arcsine 10 0.85 0.7932515
#> 44 ci_p_arcsine 10 0.87 0.7202718
#> 45 ci_p_arcsine 10 0.89 0.6703856
#> 46 ci_p_arcsine 10 0.91 0.9911662
#> 47 ci_p_arcsine 10 0.93 0.9716579
#> 48 ci_p_arcsine 10 0.95 0.9884964
#> 49 ci_p_arcsine 10 0.97 0.9972351
#> 50 ci_p_arcsine 10 0.99 0.9957338