This function performs the test for a single variance or two variances given the vectors. This function is a generalization of var.test
function from stats
package.
var.test(
x,
y = NULL,
alternative = "two.sided",
null.value = 1,
conf.level = 0.95
)
a (non-empty) numeric vector of data values.
an optional (non-empty) numeric vector of data values.
a character string specifying the alternative
hypothesis, must be one of two.sided
(default),
greater
or less
. You can specify just the initial letter.
the hypothesized number (variance or ratio of the variances) in the null hypothesis.
confidence level of the interval, by default its value is 0.95.
A list with class htest
containing the following
components:
the value of the statistic.
the p-value for the test.
a confidence interval for the variance.
the sample variance (or ratio of the sample variances)
the specified hypothesized value for alternative hypothesis.
a character string describing the alternative hypothesis.
a character string indicating the type of test performed.
a character string giving the name of the data.
# One sample -----
# Interval confidence
duration <- c(1470, 1510, 1690, 1740, 1900, 2000, 2030,
2010, 2190, 2200, 2290, 2380, 2390, 2480,
2500, 2580, 2700)
var.test(x=duration, conf.level=0.95)
#>
#> X-squared test for variance
#>
#> data: duration
#> X-squared = 2209576, df = 16, p-value < 2.2e-16
#> alternative hypothesis: true variance is not equal to 1
#> 95 percent confidence interval:
#> 76600.78 319873.17
#> sample estimates:
#> variance of x
#> 138098.5
#>
# Hypothesis testing
# H0: sigma2 = 100
# H1: sigma2 > 100
weight <- c(775, 780, 781, 795, 803, 810, 823)
res1 <- var.test(x=weight, alternative='greater', null.value=100)
res1
#>
#> X-squared test for variance
#>
#> data: weight
#> X-squared = 18.934, df = 6, p-value = 0.004276
#> alternative hypothesis: true variance is greater than 100
#> 95 percent confidence interval:
#> 0.000 1157.789
#> sample estimates:
#> variance of x
#> 315.5714
#>
# Using the plot function
plot(res1)
# Two samples -----
# Hypothesis testing
# H0: sigma1/sigma2 = 1
# H1: sigma1/sigma2 != 1
x1 <- rnorm(50, mean = 0, sd = 2)
x2 <- rnorm(30, mean = 1, sd = 1)
res2 <- var.test(x1, x2)
res2
#>
#> F test to compare two variances
#>
#> data: x1 and x2
#> F = 3.5107, num df = 49, denom df = 29, p-value = 0.0005441
#> alternative hypothesis: true ratio of variances is not equal to 1
#> 95 percent confidence interval:
#> 1.763855 6.605082
#> sample estimates:
#> ratio of variances
#> 3.510696
#>
plot(res2, from=0, to=10)