This function performs the mean test using raw data (vector).

z.test(x, sigma2, alternative = "two.sided", mu = 0, conf.level = 0.95)

Arguments

x

a (non-empty) numeric vector of data values.

sigma2

population variance which is known.

alternative

a character string specifying the alternative hypothesis, must be one of two.sided (default), greater or less. You can specify just the initial letter.

mu

the hypothesized number in the null hypothesis.

conf.level

confidence level of the interval, by default its value is 0.95.

Value

A list with class htest containing the following components:

statistic

the value of the statistic.

p.value

the p-value for the test.

conf.int

a confidence interval for the variance.

estimate

the estimated mean.

null.value

the specified hypothesized value for alternative hypothesis.

alternative

a character string describing the alternative hypothesis.

method

a character string indicating the type of test performed.

data.name

a character string giving the name of the data.

Examples

# Example 1
# H0: mu = 350
# Ha: mu < 350 with sigma2=25
content <- c(355, 353, 352, 346, 345, 345, 353, 353, 344, 350)
res1 <- z.test(x=content, mu=350, sigma2=25, alternative='less')
res1
#> 
#> 	One Sample z-test
#> 
#> data:  content
#> Z = -0.25298, p-value = 0.4001
#> alternative hypothesis: true mean is less than 350
#> 95 percent confidence interval:
#>      -Inf 352.2007
#> sample estimates:
#> mean of content 
#>           349.6 
#> 
plot(res1, shade.col='deepskyblue', col='deepskyblue')


# Example 2
# H0: mu = 170
# Ha: mu != 170 with sigma2=25
x <- rnorm(n=80, mean=171, sd=5)
res2 <- z.test(x=x, mu=170, sigma2=25, alternative='two.sided')
res2
#> 
#> 	One Sample z-test
#> 
#> data:  x
#> Z = 2.366, p-value = 0.01798
#> alternative hypothesis: true mean is not equal to 170
#> 95 percent confidence interval:
#>  170.2270 172.4183
#> sample estimates:
#> mean of x 
#>  171.3226 
#> 
plot(res2, shade.col='indianred1', col='indianred1')