This function performs the mean test using summarized data (values).

z_test(
  meanx,
  nx,
  sigma2 = NULL,
  alternative = "two.sided",
  mu = 0,
  conf.level = 0.95
)

Arguments

meanx

sample mean for sample x.

nx

sample size for sample x.

sigma2

population variance which is known.

alternative

a character string specifying the alternative hypothesis, must be one of two.sided (default), greater or less. You can specify just the initial letter.

mu

the hypothesized number in the null hypothesis.

conf.level

confidence level of the interval, by default its value is 0.95.

Value

A list with class htest containing the following components:

statistic

the value of the statistic.

p.value

the p-value for the test.

conf.int

a confidence interval for the variance.

estimate

the estimated mean.

null.value

the specified hypothesized value for alternative hypothesis.

alternative

a character string describing the alternative hypothesis.

method

a character string indicating the type of test performed.

data.name

a character string giving the name of the data.

Examples

# Example 13.1 from Freund et al. (2000)
res1 <- z_test(meanx=8.091, nx=25, mu=8, sigma2=0.16^2, alternative='two.sided')
res1
#> 
#> 	Z test for mean
#> 
#> data:  x
#> Z = 2.8437, p-value = 0.004459
#> alternative hypothesis: true  is not equal to 8
#> 95 percent confidence interval:
#>  8.028281 8.153719
#> sample estimates:
#> mean of x 
#>     8.091 
#> 
plot(res1)


# Example 13.2 from Freund et al. (2000)
res2 <- z_test(meanx=21819, nx=100, mu=22000, sigma2=1295^2, alternative='less')
res2
#> 
#> 	Z test for mean
#> 
#> data:  x
#> Z = -1.3977, p-value = 0.0811
#> alternative hypothesis: true  is less than 22000
#> 95 percent confidence interval:
#>      -Inf 22032.01
#> sample estimates:
#> mean of x 
#>     21819 
#> 
plot(res2)