References

Alfaro, Esteban; Gamez, Matias, Garcia, Noelia; with contributions from L. Guo, A. Albano, M. Sciandra, and A. Plaia. 2023. Adabag: Applies Multiclass AdaBoost.M1, SAMME and Bagging. https://CRAN.R-project.org/package=adabag.
Braun, W. J., and S. MacQueen. 2023. MPV: Data Sets from Montgomery, Peck and Vining. https://CRAN.R-project.org/package=MPV.
Breiman, L., J. H. Friedman, R. A. Olshen, and C. J. Stone. 1984. Classification and Regression Trees. 1nd ed. Boca Raton, Florida: Chapman; Hall/CRC. https://www.crcpress.com/Classification-and-Regression-Trees/Breiman-Friedman-Stone-Olshen/p/book/9780412048418.
Cortes, Corinna, and Vladimir Vapnik. 1995. “Support-Vector Networks.” Machine Learning 20 (3): 273–97. https://doi.org/10.1023/A:1022627411411.
Drucker, Harris, Chris J. C. Burges, Linda Kaufman, Alex Smola, and Vladimir Vapnik. 1997. “Support Vector Regression Machines.” In ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 9, 155–61. MIT Press.
Freund, Yoav, and Robert E. Schapire. 1995. A Desicion-Theoretic Generalization of on-Line Learning and an Application to Boosting. Vol. 904. Springer, Berlin, Heidelberg.
Friedman, J. H. 1999a. “Greedy Function Approximation: A Gradient Boosting Machine.” Stanford University.
———. 1999b. “Stochastic Gradient Boosting.” Stanford University.
Greg, Ridgeway, and GBM Developers. 2024. Gbm: Generalized Boosted Regression Models. https://github.com/gbm-developers/gbm.
Hernandez, Freddy, Olga Usuga, Carmen Patino, Jaime Mosquera, and Amylkar Urrea. 2024. RelDists: Estimation for Some Reliability Distributions. https://ousuga.github.io/RelDists/.
Hernandez-Barajas, Freddy, and Fernando Marmolejo-Ramos. 2024. RealDists: Real Statistical Distributions. https://github.com/fhernanb/RealDists.
Hernandez-Barajas, Freddy, Fernando Marmolejo-Ramos, Jamiu Olumoh, Osho Ajayi, and Olga Usuga-Manco. 2024. DiscreteDists: Discrete Statistical Distributions. https://github.com/fhernanb/DiscreteDists.
Ho, Tin Kam. 1995. Random decision forests.” In Proceedings of the International Conference on Document Analysis and Recognition, ICDAR. Vol. 1. https://doi.org/10.1109/ICDAR.1995.598994.
James, Gareth, Daniela Witten, Trevor Hastie, and Robert Tibshirani. 2013. An Introduction to Statistical Learning – with Applications in r. Vol. 103. Springer Texts in Statistics. New York: Springer. https://doi.org/10.1007/DOI.
Milborrow, Stephen. 2024. Rpart.plot: Plot Rpart Models: An Enhanced Version of Plot.rpart. http://www.milbo.org/rpart-plot/index.html.
Ripley, Brian. 2023. Tree: Classification and Regression Trees. https://CRAN.R-project.org/package=tree.
———. 2024. MASS: Support Functions and Datasets for Venables and Ripley’s MASS. http://www.stats.ox.ac.uk/pub/MASS4/.
Schlosser, Lisa. 2020. “Distributional Trees and Forests.” PhD thesis, University of Innsbruck.
Schlosser, Lisa, Torsten Hothorn, Reto Stauffer, and Achim Zeileis. 2019. Distributional regression forests for probabilistic precipitation forecasting in complex terrain.” The Annals of Applied Statistics 13 (3): 1564–89. https://doi.org/10.1214/19-AOAS1247.
Schlosser, Lisa, Moritz N. Lang, Torsten Hothorn, and Achim Zeileis. 2021. Disttree: Trees and Forests for Distributional Regression. https://R-Forge.R-project.org/projects/partykit/.
Shivaswamy, Pannagadatta K, Wei Chu, and Martin Jansche. 2007. “A Support Vector Approach to Censored Targets.” In Seventh IEEE International Conference on Data Mining (ICDM 2007), 655–60. IEEE.
Stasinopoulos, Mikis, and Robert Rigby. 2024. Gamlss: Generalized Additive Models for Location Scale and Shape. https://www.gamlss.com/.
Therneau, Terry, and Beth Atkinson. 2023. Rpart: Recursive Partitioning and Regression Trees. https://github.com/bethatkinson/rpart.
Xie, Yihui. 2015. Dynamic Documents with R and Knitr. 2nd ed. Boca Raton, Florida: Chapman; Hall/CRC. http://yihui.name/knitr/.
———. 2024. Bookdown: Authoring Books and Technical Documents with r Markdown. https://github.com/rstudio/bookdown.