This function calculates the mean and variance for the hyper-Poisson distribution with parameters \(\mu\) and \(\sigma\).

mean_var_hp(mu, sigma)

mean_var_hp2(mu, sigma)

Arguments

mu

value of the mu parameter.

sigma

value of the sigma parameter.

Value

the function returns a list with the mean and variance.

Details

The hyper-Poisson distribution with parameters \(\mu\) and \(\sigma\) has a support 0, 1, 2, ... and density given by

\(f(x | \mu, \sigma) = \frac{\mu^x}{_1F_1(1;\mu;\sigma)}\frac{\Gamma(\sigma)}{\Gamma(x+\sigma)}\)

where the function \(_1F_1(a;c;z)\) is defined as

\(_1F_1(a;c;z) = \sum_{r=0}^{\infty}\frac{(a)_r}{(c)_r}\frac{z^r}{r!}\)

and \((a)_r = \frac{\gamma(a+r)}{\gamma(a)}\) for \(a>0\) and \(r\) positive integer.

This function calculates the mean and variance of this distribution.

References

Sáez-Castillo AJ, Conde-Sánchez A (2013). “A hyper-Poisson regression model for overdispersed and underdispersed count data.” Computational Statistics & Data Analysis, 61, 148--157.

See also

Author

Freddy Hernandez, fhernanb@unal.edu.co

Examples

# Example 1

# Theoretical values
mean_var_hp(mu=5.5, sigma=0.1)
#> $mean
#> [1] 6.399917
#> 
#> $variance
#> [1] 5.500533
#> 

# Using simulated values
y <- rHYPERPO(n=1000, mu=5.5, sigma=0.1)
mean(y)
#> [1] 6.484
var(y)
#> [1] 5.429173


# Example 2

# Theoretical values
mean_var_hp2(mu=5.5, sigma=1.9)
#> $mean
#> [1] 5.5
#> 
#> $variance
#> [1] 6.345633
#> 

# Using simulated values
y <- rHYPERPO2(n=1000, mu=5.5, sigma=1.9)
mean(y)
#> [1] 5.452
var(y)
#> [1] 6.482178