These functions define the density, distribution function, quantile function and random generation for the Generalized Geometric distribution with parameters \(\mu\) and \(\sigma\).

dGGEO(x, mu = 0.5, sigma = 1, log = FALSE)

pGGEO(q, mu = 0.5, sigma = 1, lower.tail = TRUE, log.p = FALSE)

rGGEO(n, mu = 0.5, sigma = 1)

qGGEO(p, mu = 0.5, sigma = 1, lower.tail = TRUE, log.p = FALSE)

Arguments

x, q

vector of (non-negative integer) quantiles.

mu

vector of the mu parameter.

sigma

vector of the sigma parameter.

log, log.p

logical; if TRUE, probabilities p are given as log(p).

lower.tail

logical; if TRUE (default), probabilities are \(P[X <= x]\), otherwise, \(P[X > x]\).

n

number of random values to return.

p

vector of probabilities.

Value

dGGEO gives the density, pGGEO gives the distribution function, qGGEO gives the quantile function, rGGEO generates random deviates.

Details

The GGEO distribution with parameters \(\mu\) and \(\sigma\) has a support 0, 1, 2, ... and mass function given by

\(f(x | \mu, \sigma) = \frac{\sigma \mu^x (1-\mu)}{(1-(1-\sigma) \mu^{x+1})(1-(1-\sigma) \mu^{x})}\)

with \(0 < \mu < 1\) and \(\sigma > 0\). If \(\sigma=1\), the GGEO distribution reduces to the geometric distribution with success probability \(1-\mu\).

Note: in this implementation we changed the original parameters \(\theta\) for \(\mu\) and \(\alpha\) for \(\sigma\), we did it to implement this distribution within gamlss framework.

References

gomez2010DiscreteDists

See also

Author

Valentina Hurtado Sepulveda, vhurtados@unal.edu.co

Examples

# Example 1
# Plotting the mass function for different parameter values

x_max <- 80
probs1 <- dGGEO(x=0:x_max, mu=0.5, sigma=10)
probs2 <- dGGEO(x=0:x_max, mu=0.7, sigma=30)
probs3 <- dGGEO(x=0:x_max, mu=0.9, sigma=50)

# To plot the first k values
plot(x=0:x_max, y=probs1, type="o", lwd=2, col="dodgerblue", las=1,
     ylab="P(X=x)", xlab="X", main="Probability for GGEO",
     ylim=c(0, 0.20))
points(x=0:x_max, y=probs2, type="o", lwd=2, col="tomato")
points(x=0:x_max, y=probs3, type="o", lwd=2, col="green4")
legend("topright", col=c("dodgerblue", "tomato", "green4"), lwd=3,
       legend=c("mu=0.5, sigma=10",
                "mu=0.7, sigma=30",
                "mu=0.9, sigma=50"))


# Example 2
# Checking if the cumulative curves converge to 1

x_max <- 10
plot_discrete_cdf(x=0:x_max,
                  fx=dGGEO(x=0:x_max, mu=0.3, sigma=15),
                  col="dodgerblue",
                  main="CDF for GGEO",
                  lwd= 3)
legend("bottomright", legend="mu=0.3, sigma=15", col="dodgerblue",
       lty=1, lwd=2, cex=0.8)


plot_discrete_cdf(x=0:x_max,
                  fx=dGGEO(x=0:x_max, mu=0.5, sigma=30),
                  col="tomato",
                  main="CDF for GGEO",
                  lwd=3)
legend("bottomright", legend="mu=0.5, sigma=30",
       col="tomato", lty=1, lwd=2, cex=0.8)


plot_discrete_cdf(x=0:x_max,
                  fx=dGGEO(x=0:x_max, mu=0.5, sigma=50),
                  col="green4",
                  main="CDF for GGEO",
                  lwd=3)
legend("bottomright", legend="mu=0.5, sigma=50",
       col="green4", lty=1, lwd=2, cex=0.8)


# Example 3
# Comparing the random generator output with
# the theoretical probabilities

x_max <- 15
probs1 <- dGGEO(x=0:x_max, mu=0.5, sigma=5)
names(probs1) <- 0:x_max

x <- rGGEO(n=1000, mu=0.5, sigma=5)
probs2 <- prop.table(table(x))

cn <- union(names(probs1), names(probs2))
height <- rbind(probs1[cn], probs2[cn])
nombres <- cn
mp <- barplot(height, beside=TRUE, names.arg=nombres,
              col=c("dodgerblue3", "firebrick3"), las=1,
              xlab="X", ylab="Proportion")
legend("topright",
       legend=c("Theoretical", "Simulated"),
       bty="n", lwd=3,
       col=c("dodgerblue3","firebrick3"), lty=1)


# Example 4
# Checking the quantile function

mu <- 0.5
sigma <- 5
p <- seq(from=0, to=1, by=0.01)
qxx <- qGGEO(p=p, mu=mu, sigma=sigma, lower.tail=TRUE, log.p=FALSE)
plot(p, qxx, type="s", lwd=2, col="green3", ylab="quantiles",
     main="Quantiles of GGEO(mu=0.5, sigma=0.5)")