These functions define the density, distribution function, quantile function and random generation for the Discrete Marshall–Olkin Length Biased Exponential DMOLBE distribution with parameters \(\mu\) and \(\sigma\).
dDMOLBE(x, mu = 1, sigma = 1, log = FALSE)
pDMOLBE(q, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE)
rDMOLBE(n, mu = 1, sigma = 1)
qDMOLBE(p, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE)
vector of (non-negative integer) quantiles.
vector of the mu parameter.
vector of the sigma parameter.
logical; if TRUE, probabilities p are given as log(p).
logical; if TRUE (default), probabilities are \(P[X <= x]\), otherwise, \(P[X > x]\).
number of random values to return.
vector of probabilities.
dDMOLBE
gives the density, pDMOLBE
gives the distribution
function, qDMOLBE
gives the quantile function, rDMOLBE
generates random deviates.
The DMOLBE distribution with parameters \(\mu\) and \(\sigma\) has a support 0, 1, 2, ... and mass function given by
\(f(x | \mu, \sigma) = \frac{\sigma ((1+x/\mu)\exp(-x/\mu)-(1+(x+1)/\mu)\exp(-(x+1)/\mu))}{(1-(1-\sigma)(1+x/\mu)\exp(-x/\mu)) ((1-(1-\sigma)(1+(x+1)/\mu)\exp(-(x+1)/\mu))}\)
with \(\mu > 0\) and \(\sigma > 0\)
Aljohani HM, Ahsan-ul-Haq M, Zafar J, Almetwally EM, Alghamdi AS, Hussam E, Muse AH (2023). “Analysis of Covid-19 data using discrete Marshall-Olkinin Length Biased Exponential: Bayesian and frequentist approach.” Scientific Reports, 13(1), 12243.
# Example 1
# Plotting the mass function for different parameter values
x_max <- 20
probs1 <- dDMOLBE(x=0:x_max, mu=0.5, sigma=0.5)
probs2 <- dDMOLBE(x=0:x_max, mu=5, sigma=0.5)
probs3 <- dDMOLBE(x=0:x_max, mu=1, sigma=2)
# To plot the first k values
plot(x=0:x_max, y=probs1, type="o", lwd=2, col="dodgerblue", las=1,
ylab="P(X=x)", xlab="X", main="Probability for DMOLBE",
ylim=c(0, 0.80))
points(x=0:x_max, y=probs2, type="o", lwd=2, col="tomato")
points(x=0:x_max, y=probs3, type="o", lwd=2, col="green4")
legend("topright", col=c("dodgerblue", "tomato", "green4"), lwd=3,
legend=c("mu=0.5, sigma=0.5",
"mu=5, sigma=0.5",
"mu=1, sigma=2"))
# Example 2
# Checking if the cumulative curves converge to 1
x_max <- 20
cumulative_probs1 <- pDMOLBE(q=0:x_max, mu=0.5, sigma=0.5)
cumulative_probs2 <- pDMOLBE(q=0:x_max, mu=5, sigma=0.5)
cumulative_probs3 <- pDMOLBE(q=0:x_max, mu=1, sigma=2)
plot(x=0:x_max, y=cumulative_probs1, col="dodgerblue",
type="o", las=1, ylim=c(0, 1),
main="Cumulative probability for DMOLBE",
xlab="X", ylab="Probability")
points(x=0:x_max, y=cumulative_probs2, type="o", col="tomato")
points(x=0:x_max, y=cumulative_probs3, type="o", col="green4")
legend("bottomright", col=c("dodgerblue", "tomato", "green4"), lwd=3,
legend=c("mu=0.5, sigma=0.5",
"mu=5, sigma=0.5",
"mu=1, sigma=2"))
# Example 3
# Comparing the random generator output with
# the theoretical probabilities
x_max <- 15
probs1 <- dDMOLBE(x=0:x_max, mu=5, sigma=0.5)
names(probs1) <- 0:x_max
x <- rDMOLBE(n=1000, mu=5, sigma=0.5)
probs2 <- prop.table(table(x))
cn <- union(names(probs1), names(probs2))
height <- rbind(probs1[cn], probs2[cn])
nombres <- cn
mp <- barplot(height, beside = TRUE, names.arg = nombres,
col=c('dodgerblue3','firebrick3'), las=1,
xlab='X', ylab='Proportion')
legend('topright',
legend=c('Theoretical', 'Simulated'),
bty='n', lwd=3,
col=c('dodgerblue3','firebrick3'), lty=1)
# Example 4
# Checking the quantile function
mu <- 3
sigma <-3
p <- seq(from=0, to=1, by=0.01)
qxx <- qDMOLBE(p=p, mu=mu, sigma=sigma, lower.tail=TRUE, log.p=FALSE)
plot(p, qxx, type="s", lwd=2, col="green3", ylab="quantiles",
main="Quantiles of DMOLBE(mu = 3, sigma = 3)")