The function DMOLBE()
defines the Discrete Marshall-Olkin Length Biased
Exponential distribution, a two parameter
distribution, for a gamlss.family
object to be used in GAMLSS fitting
using the function gamlss()
.
DMOLBE(mu.link = "log", sigma.link = "log")
Returns a gamlss.family
object which can be used
to fit a DMOLBE distribution
in the gamlss()
function.
The DMOLBE distribution with parameters \(\mu\) and \(\sigma\) has a support 0, 1, 2, ... and mass function given by
\(f(x | \mu, \sigma) = \frac{\sigma ((1+x/\mu)\exp(-x/\mu)-(1+(x+1)/\mu)\exp(-(x+1)/\mu))}{(1-(1-\sigma)(1+x/\mu)\exp(-x/\mu)) ((1-(1-\sigma)(1+(x+1)/\mu)\exp(-(x+1)/\mu))}\)
with \(\mu > 0\) and \(\sigma > 0\)
Aljohani2023DiscreteDists
# Example 1
# Generating some random values with
# known mu and sigma
set.seed(1234)
y <- rDMOLBE(n=100, mu=10, sigma=7)
# Fitting the model
library(gamlss)
mod1 <- gamlss(y~1, sigma.fo=~1, family=DMOLBE,
control=gamlss.control(n.cyc=500, trace=FALSE))
# Extracting the fitted values for mu and sigma
# using the inverse link function
exp(coef(mod1, what='mu'))
#> (Intercept)
#> 9.042679
exp(coef(mod1, what='sigma'))
#> (Intercept)
#> 6.713267
# Example 2
# Generating random values under some model
# A function to simulate a data set with Y ~ DMOLBE
gendat <- function(n) {
x1 <- runif(n, min=0.4, max=0.6)
x2 <- runif(n, min=0.4, max=0.6)
mu <- exp(1.21 - 3 * x1) # 0.75 approximately
sigma <- exp(1.26 - 2 * x2) # 1.30 approximately
y <- rDMOLBE(n=n, mu=mu, sigma=sigma)
data.frame(y=y, x1=x1,x2=x2)
}
set.seed(123)
dat <- gendat(n=350)
# Fitting the model
mod2 <- NULL
mod2 <- gamlss(y~x1, sigma.fo=~x2, family=DMOLBE, data=dat,
control=gamlss.control(n.cyc=500, trace=FALSE))
summary(mod2)
#> Warning: summary: vcov has failed, option qr is used instead
#> ******************************************************************
#> Family: c("DMOLBE", "Discrete Marshall-Olkin Length Biased Exponential" )
#>
#> Call: gamlss(formula = y ~ x1, sigma.formula = ~x2, family = DMOLBE,
#> data = dat, control = gamlss.control(n.cyc = 500, trace = FALSE))
#>
#> Fitting method: RS()
#>
#> ------------------------------------------------------------------
#> Mu link function: log
#> Mu Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 1.1253 0.3342 3.367 0.000845 ***
#> x1 -3.0347 0.6771 -4.482 1.01e-05 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> ------------------------------------------------------------------
#> Sigma link function: log
#> Sigma Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 1.2774 0.8489 1.505 0.133
#> x2 -1.6791 1.6745 -1.003 0.317
#>
#> ------------------------------------------------------------------
#> No. of observations in the fit: 350
#> Degrees of Freedom for the fit: 4
#> Residual Deg. of Freedom: 346
#> at cycle: 9
#>
#> Global Deviance: 952.4395
#> AIC: 960.4395
#> SBC: 975.8712
#> ******************************************************************