These functions define the density, distribution function, quantile function and random generation for the Bernoulli-geometric distribution with parameters \(\mu\) and \(\sigma\).
dBerG(x, mu, sigma, log = FALSE)
pBerG(q, mu, sigma, lower.tail = TRUE, log.p = FALSE)
rBerG(n, mu, sigma)
qBerG(p, mu, sigma, lower.tail = TRUE, log.p = FALSE)
vector of (non-negative integer) quantiles.
vector of the mu parameter.
vector of the sigma parameter.
logical; if TRUE, probabilities p are given as log(p).
logical; if TRUE (default), probabilities are \(P[X <= x]\), otherwise, \(P[X > x]\).
number of random values to return.
vector of probabilities.
dBerG
gives the density, pBerG
gives the distribution
function, qBerG
gives the quantile function, rBerG
generates random deviates.
The BerG distribution with parameters \(\mu\) and \(\sigma\) has a support 0, 1, 2, ... and mass function given by
\(f(x | \mu, \sigma) = \frac{(1-\mu+\sigma)}{(1+\mu+\sigma)}\) if \(x=0\),
\(f(x | \mu, \sigma) = 4 \mu \frac{(\mu+\sigma-1)^{x-1}}{(\mu+\sigma+1)^{x+1}}\) if \(x=1, 2, ...\),
with \(\mu > 0\), \(\sigma > 0\) and \(\sigma>|\mu-1|\).
bourguignon2022DiscreteDists
BerG.
# Example 1
# Plotting the mass function for different parameter values
x_max <- 20
probs1 <- dBerG(x=0:x_max, mu=0.7, sigma=0.5)
probs2 <- dBerG(x=0:x_max, mu=0.3, sigma=1)
probs3 <- dBerG(x=0:x_max, mu=2, sigma=3)
# To plot the first k values
plot(x=0:x_max, y=probs1, type="o", lwd=2, col="dodgerblue", las=1,
ylab="P(X=x)", xlab="X", main="Probability for BerG",
ylim=c(0, 0.80))
points(x=0:x_max, y=probs2, type="o", lwd=2, col="tomato")
points(x=0:x_max, y=probs3, type="o", lwd=2, col="green4")
legend("topright", col=c("dodgerblue", "tomato", "green4"), lwd=3,
legend=c("mu=0.7, sigma=0.5",
"mu=0.3, sigma=1",
"mu=2, sigma=3"))
# Example 2
# Checking if the cumulative curves converge to 1
#plot1
x_max <- 10
plot_discrete_cdf(x=0:x_max,
fx=dBerG(x=0:x_max, mu=1, sigma=2),
col="dodgerblue",
main="CDF for BerG",
lwd=3)
legend("bottomright", legend="mu=1, sigma=2",
col="dodgerblue", lty=1, lwd=2, cex=0.8)
#plot2
plot_discrete_cdf(x=0:x_max,
fx=dBerG(x=0:x_max, mu=3, sigma=3),
col="tomato",
main="CDF for BerG",
lwd=3)
legend("bottomright", legend="mu=3, sigma=3",
col="tomato", lty=1, lwd=2, cex=0.8)
#plot3
plot_discrete_cdf(x=0:x_max,
fx=dBerG(x=0:x_max, mu=5, sigma=5),
col="green4",
main="CDF for BerG",
lwd=3)
legend("bottomright", legend="mu=5, sigma=5",
col="green4", lty=1, lwd=2, cex=0.8)
# Example 3
# Comparing the random generator output with
# the theoretical probabilities
x_max <- 15
probs1 <- dBerG(x=0:x_max, mu=0.5, sigma=5)
names(probs1) <- 0:x_max
x <- rBerG(n=1000, mu=0.5, sigma=5)
probs2 <- prop.table(table(x))
cn <- union(names(probs1), names(probs2))
height <- rbind(probs1[cn], probs2[cn])
nombres <- cn
mp <- barplot(height, beside=TRUE, names.arg=nombres,
col=c('dodgerblue3','firebrick3'), las=1,
xlab='X', ylab='Proportion')
legend('topright',
legend=c('Theoretical', 'Simulated'),
bty='n', lwd=3,
col=c('dodgerblue3','firebrick3'), lty=1)
# Example 4
# Checking the quantile function
mu <- 1
sigma <- 2
p <- seq(from=0, to=1, by=0.01)
qxx <- qBerG(p=p, mu=mu, sigma=sigma, lower.tail=TRUE, log.p=FALSE)
plot(p, qxx, type="s", lwd=2, col="green3", ylab="quantiles",
main="Quantiles of DBerG(mu=1, sigma=2)")