The function HYPERPO2()
defines the hyper Poisson distribution, a two parameter
distribution, for a gamlss.family
object to be used in GAMLSS fitting
using the function gamlss()
.
HYPERPO2(mu.link = "log", sigma.link = "log")
Returns a gamlss.family
object which can be used
to fit a hyper-Poisson distribution version 2
in the gamlss()
function.
The hyper-Poisson distribution with parameters \(\mu\) and \(\sigma\) has a support 0, 1, 2, ...
Note: in this implementation the parameter \(\mu\) is the mean of the distribution and \(\sigma\) corresponds to the dispersion parameter. If you fit a model with this parameterization, the time will increase because an internal procedure to convert \(\mu\) to \(\lambda\) parameter.
saez2013hyperpoDiscreteDists
# Example 1
# Generating some random values with
# known mu and sigma
set.seed(1234)
y <- rHYPERPO2(n=200, mu=3, sigma=0.5)
# Fitting the model
library(gamlss)
mod1 <- gamlss(y~1, sigma.fo=~1, family=HYPERPO2,
control=gamlss.control(n.cyc=500, trace=FALSE))
# Extracting the fitted values for mu and sigma
# using the inverse link function
exp(coef(mod1, what='mu'))
#> (Intercept)
#> 2.949987
exp(coef(mod1, what='sigma'))
#> (Intercept)
#> 0.4793693
# Example 2
# Generating random values under some model
# \donttest{
# A function to simulate a data set with Y ~ HYPERPO2
gendat <- function(n) {
x1 <- runif(n)
x2 <- runif(n)
mu <- exp(1.21 - 3 * x1) # 0.75 approximately
sigma <- exp(1.26 - 2 * x2) # 1.30 approximately
y <- rHYPERPO2(n=n, mu=mu, sigma=sigma)
data.frame(y=y, x1=x1, x2=x2)
}
set.seed(1234)
datos <- gendat(n=500)
mod2 <- NULL
mod2 <- gamlss(y~x1, sigma.fo=~x2, family=HYPERPO2, data=datos,
control=gamlss.control(n.cyc=500, trace=FALSE))
summary(mod2)
#> Warning: summary: vcov has failed, option qr is used instead
#> ******************************************************************
#> Family: c("HYPERPO2", "Hyper-Poisson-2")
#>
#> Call: gamlss(formula = y ~ x1, sigma.formula = ~x2, family = HYPERPO2,
#> data = datos, control = gamlss.control(n.cyc = 500, trace = FALSE))
#>
#> Fitting method: RS()
#>
#> ------------------------------------------------------------------
#> Mu link function: log
#> Mu Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 1.24765 0.07741 16.12 <2e-16 ***
#> x1 -3.26816 0.20479 -15.96 <2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> ------------------------------------------------------------------
#> Sigma link function: log
#> Sigma Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 1.3782 0.5316 2.592 0.00981 **
#> x2 -2.4371 0.8745 -2.787 0.00553 **
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> ------------------------------------------------------------------
#> No. of observations in the fit: 500
#> Degrees of Freedom for the fit: 4
#> Residual Deg. of Freedom: 496
#> at cycle: 3
#>
#> Global Deviance: 1119.295
#> AIC: 1127.295
#> SBC: 1144.153
#> ******************************************************************
# }