Skip to contents

The Kumaraswamy Inverse Weibull family

Usage

KumIW(mu.link = "log", sigma.link = "log", nu.link = "log")

Arguments

defines the mu.link, with "log" link as the default for the mu parameter.

defines the sigma.link, with "log" link as the default for the sigma.

defines the nu.link, with "log" link as the default for the nu parameter.

Value

Returns a gamlss.family object which can be used to fit a KumIW distribution in the gamlss() function.

Details

The Kumaraswamy Inverse Weibull Distribution with parameters mu, sigma and nu has density given by

\(f(x)= \mu \sigma \nu x^{-\mu - 1} \exp{- \sigma x^{-\mu}} (1 - \exp{- \sigma x^{-\mu}})^{\nu - 1},\)

for \(x > 0\), \(\mu > 0\), \(\sigma > 0\) and \(\nu > 0\).

References

Almalki, S. J., & Nadarajah, S. (2014). Modifications of the Weibull distribution: A review. Reliability Engineering & System Safety, 124, 32-55.

Shahbaz, M. Q., Shahbaz, S., & Butt, N. S. (2012). The Kumaraswamy Inverse Weibull Distribution. Pakistan journal of statistics and operation research, 479-489.

See also

Author

Johan David Marin Benjumea, johand.marin@udea.edu.co

Examples

# Example 1
# Generating some random values with
# known mu, sigma, nu and tau
y <- rKumIW(n=100, mu = 1.5, sigma=  1.5, nu = 5)

# Fitting the model
require(gamlss)

mod <- gamlss(y~1, sigma.fo=~1, nu.fo=~1, family="KumIW",
              control=gamlss.control(n.cyc=5000, trace=FALSE))

# Extracting the fitted values for mu, sigma and nu 
# using the inverse link function
exp(coef(mod, what="mu"))
#> (Intercept) 
#>    1.237975 
exp(coef(mod, what="sigma"))
#> (Intercept) 
#>     1.24013 
exp(coef(mod, what="nu"))
#> (Intercept) 
#>    3.757141 

# Example 2
# Generating random values under some model
n <- 200
x1 <- runif(n, min=0.4, max=0.6)
x2 <- runif(n, min=0.4, max=0.6)
mu <- exp(1 - x1)
sigma <- exp(1 - x2)
nu <- 5
x <- rKumIW(n=n, mu, sigma, nu)

mod <- gamlss(x~x1, sigma.fo=~x2, nu.fo=~1, family=KumIW,
              control=gamlss.control(n.cyc=5000, trace=FALSE))

coef(mod, what="mu")
#> (Intercept)          x1 
#>  -0.2206343   0.9095627 
coef(mod, what="sigma")
#> (Intercept)          x2 
#>   0.8028841  -0.9045411 
exp(coef(mod, what="nu"))
#> (Intercept) 
#>     3.84521