This function obtains the summary table for objects of class marZIBPLaksh.

# S3 method for class 'marZIBPLaksh'
summary(object, ...)

# S3 method for class 'marZIBPLaksh'
print(object, ...)

Arguments

object

of class marZIBPLaksh.

...

aditional arguments.

Value

Returns the summary table.

Author

Freddy Hernandez-Barajas, fhernanb@unal.edu.co

Examples

# Example 1 ---------------------------------------------------------------
l1 <- 3
l2 <- 4
alpha <- -0.90
psi <- 0.2

set.seed(12345678)
data1 <- rZIBP_Laksh(n=100, l1=l1, l2=l2, alpha=alpha, psi=psi)
data1 <- as.data.frame(data1)

# To fit the model
mod1 <- NULL
mod1 <- marZIBP_Laksh(mu1.fo=X1~1,
                      mu2.fo=X2~1,
                      psi.fo=~1,
                      data=data1)
#> N = 4, M = 5 machine precision = 2.22045e-16
#> At X0, 0 variables are exactly at the bounds
#> At iterate     0  f=       484.52  |proj g|=       153.42
#> At iterate    10  f =        381.9  |proj g|=      0.031223
#> At iterate    20  f =       381.89  |proj g|=       0.09098
#> 
#> iterations 23
#> function evaluations 30
#> segments explored during Cauchy searches 24
#> BFGS updates skipped 0
#> active bounds at final generalized Cauchy point 0
#> norm of the final projected gradient 0.00028121
#> final function value 381.891
#> 
#> F = 381.891
#> final  value 381.890661 
#> converged

# To obtain the usual summary table
summary(mod1)
#> ---------------------------------------------------------------
#> Fixed effects for log(mu1) 
#> ---------------------------------------------------------------
#>             Estimate Std. Error z value  Pr(>|z|)    
#> (Intercept) 0.959844   0.075765  12.669 < 2.2e-16 ***
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> ---------------------------------------------------------------
#> Fixed effects for log(mu2) 
#> ---------------------------------------------------------------
#>             Estimate Std. Error z value  Pr(>|z|)    
#> (Intercept) 1.169665   0.070763  16.529 < 2.2e-16 ***
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> ---------------------------------------------------------------
#> Fixed effects for logit(psi) 
#> ---------------------------------------------------------------
#>             Estimate Std. Error z value  Pr(>|z|)    
#> (Intercept) -1.66049    0.27439 -6.0515 1.435e-09 ***
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> ---------------------------------------------------------------
#> Estimation for alpha 
#> ---------------------------------------------------------------
#>             Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -0.79917    5.13821 -0.1555   0.8764
#> ---------------------------------------------------------------

# To explore the estimations of l1, l2, mu and p

# To obtain E(Y1)=v1 and E(Y2)=v2
mod1$fitted.mu1[1]
#> [1] 2.611288
mod1$fitted.mu2[1]
#> [1] 3.220912

# To compare sample means with v1 and v2
colMeans(data1)
#>   X1   X2 
#> 2.61 3.22 

# To obtain alpha and psi
mod1$fitted.alpha
#> [1] -0.7991705
mod1$fitted.psi[1]
#> [1] 0.1596964

# To obtain l1 and l2
mod1$fitted.l1[1]
#> [1] 3.107553
mod1$fitted.l2[1]
#> [1] 3.833034

# Example 2 ---------------------------------------------------------------

gen_data_ZIBP_Laksh <- function(n=100) {
  # To generate the covariates
  x1 <- runif(n=n)
  x2 <- runif(n=n)

  # To generate the means
  mu1 <- exp(-2 + 3.5 * x1 + 2.7 * x2)
  mu2 <- exp(-1 + 1.3 * x1 + 2.1 * x2)

  # To generate the psi
  logit_inv <- function(x) exp(x) / (1+exp(x))
  psi  <- logit_inv(-2.4 + 1.2 * x2)

  alpha <- -1

  # To obtain lambdas
  l1 <- mu1 / (1-psi)
  l2 <- mu2 / (1-psi)

  # To generate Y1 and Y2
  y <- NULL
  for (i in 1:n)
    y <- rbind(y, rZIBP_Laksh(n=1, l1=l1[i], l2=l2[i],
                              alpha=alpha, psi=psi[i]))

  # To create the dataset
  dataset <- data.frame(y1=y[,1], y2=y[,2],
                        x1=x1, x2=x2,
                        mu1=mu1, mu2=mu2,
                        alpha=alpha, psi=psi,
                        l1=l1, l2=l2)

  return(dataset)
}

set.seed(123456)
data2 <- gen_data_ZIBP_Laksh(n=100)
head(data2, n=8)
#>   y1 y2         x1         x2        mu1       mu2 alpha        psi         l1
#> 1  3  1 0.79778432 0.03855369  2.4506176 1.1253368    -1 0.08676931  2.6834595
#> 2  0  0 0.75356509 0.65944752 11.2232345 3.9136655    -1 0.16677432 13.4696215
#> 3  0  3 0.39125568 0.31146853  1.2341222 1.1767028    -1 0.11647553  1.3968172
#> 4  0  1 0.34155670 0.18956915  0.7462349 0.8539513    -1 0.10224576  0.8312240
#> 5  0  0 0.36129411 0.62607131  2.5984677 2.1911622    -1 0.16128277  3.0981452
#> 6  0  1 0.19834473 0.51671846  1.0934594 1.4091081    -1 0.14431081  1.2778698
#> 7 14 10 0.53485796 0.92794573 10.7774537 5.1758386    -1 0.21645173 13.7546774
#> 8  0  0 0.09652624 0.05837738  0.2221196 0.4714589    -1 0.08867293  0.2437321
#>          l2
#> 1 1.2322591
#> 2 4.6970055
#> 3 1.3318282
#> 4 0.9512083
#> 5 2.6125161
#> 6 1.6467522
#> 7 6.6056410
#> 8 0.5173323

mod2 <- NULL
mod2 <- marZIBP_Laksh(mu1.fo=y1~x1+x2,
                      mu2.fo=y2~x1+x2,
                      psi.fo=~x2,
                      data=data2)
#> N = 9, M = 5 machine precision = 2.22045e-16
#> At X0, 0 variables are exactly at the bounds
#> At iterate     0  f=       1391.9  |proj g|=       537.42
#> At iterate    10  f =       362.78  |proj g|=        11.172
#> At iterate    20  f =       352.64  |proj g|=         2.597
#> At iterate    30  f =       352.58  |proj g|=       0.61651
#> At iterate    40  f =        352.4  |proj g|=        1.0726
#> At iterate    50  f =       352.39  |proj g|=       0.30517
#> At iterate    60  f =       352.38  |proj g|=       0.39111
#> At iterate    70  f =       352.37  |proj g|=       0.32202
#> At iterate    80  f =       352.37  |proj g|=      0.012024
#> At iterate    90  f =       352.37  |proj g|=      0.039797
#> At iterate   100  f =       352.37  |proj g|=      0.019207
#> At iterate   110  f =       352.37  |proj g|=        0.0104
#> 
#> iterations 110
#> function evaluations 124
#> segments explored during Cauchy searches 111
#> BFGS updates skipped 0
#> active bounds at final generalized Cauchy point 0
#> norm of the final projected gradient 0.0104005
#> final function value 352.367
#> 
#> F = 352.367
#> final  value 352.367190 
#> converged

summary(mod2)
#> ---------------------------------------------------------------
#> Fixed effects for log(mu1) 
#> ---------------------------------------------------------------
#>             Estimate Std. Error z value  Pr(>|z|)    
#> (Intercept) -1.84880    0.18034 -10.252 < 2.2e-16 ***
#> x1           3.27174    0.16686  19.608 < 2.2e-16 ***
#> x2           2.84826    0.19598  14.533 < 2.2e-16 ***
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> ---------------------------------------------------------------
#> Fixed effects for log(mu2) 
#> ---------------------------------------------------------------
#>             Estimate Std. Error z value  Pr(>|z|)    
#> (Intercept) -1.32182    0.22616 -5.8445 5.080e-09 ***
#> x1           1.40894    0.20975  6.7171 1.853e-11 ***
#> x2           2.58735    0.26971  9.5929 < 2.2e-16 ***
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> ---------------------------------------------------------------
#> Fixed effects for logit(psi) 
#> ---------------------------------------------------------------
#>             Estimate Std. Error z value Pr(>|z|)  
#> (Intercept) -2.55624    1.01883 -2.5090  0.01211 *
#> x2           0.38412    1.42714  0.2692  0.78781  
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> ---------------------------------------------------------------
#> Estimation for alpha 
#> ---------------------------------------------------------------
#>             Estimate Std. Error z value Pr(>|z|)
#> (Intercept)  -0.9870     1.5567  -0.634   0.5261
#> ---------------------------------------------------------------

mod2$fitted.alpha
#> [1] -0.9870002