R/dBP_Laksh.R
moments_estim_BP_Laksh.Rd
This function obtains moment estimators for the Bivariate Poisson distribution under the parameterization of Lakshminarayana et. al (1993).
moments_estim_BP_Laksh(x)
Returns a vector with \(\hat{\lambda_1}\), \(\hat{\lambda_2}\) and \(\hat{\alpha}\).
Lakshminarayana, J., Pandit, S. N., & Srinivasa Rao, K. (1999). On a bivariate Poisson distribution. Communications in Statistics-Theory and Methods, 28(2), 267-276.
# Generating random values and moment estimations
l1 <- 1
l2 <- 2
alpha <- -2.7
x <- rBP_Laksh(n=500, l1, l2, alpha)
moments_estim_BP_Laksh(x)
#> l1_hat l2_hat alpha_hat_cor
#> 0.9880 2.0460 -2.4809
# Analizing example from Famoye (2010)
freq <- c(34, 20, 4, 6, 4,
17, 7, 0, 0, 0,
6, 4, 1, 0, 0,
0, 4, 0, 0, 0,
0, 0, 0, 0, 0,
2, 0, 0, 0, 0)
data_table <- matrix(freq, ncol=5, byrow=TRUE)
rownames(data_table) <- 0:5
colnames(data_table) <- 0:4
data_table
#> 0 1 2 3 4
#> 0 34 20 4 6 4
#> 1 17 7 0 0 0
#> 2 6 4 1 0 0
#> 3 0 4 0 0 0
#> 4 0 0 0 0 0
#> 5 2 0 0 0 0
long <- as.data.frame.table(data_table)
x <- long[rep(1:nrow(long), long$Freq), -3]
x <- data.matrix(x)
colMeans(x)
#> Var1 Var2
#> 1.623853 1.724771
var(x)
#> Var1 Var2
#> Var1 1.033129 -0.169300
#> Var2 -0.169300 1.071696
cor(x)
#> Var1 Var2
#> Var1 1.0000000 -0.1608955
#> Var2 -0.1608955 1.0000000
moments_estim_BP_Laksh(x)
#> l1_hat l2_hat alpha_hat_cor
#> 1.6239 1.7248 -1.9980