These functions define the density, distribution function, quantile function and random generation for the Discrete Lindley distribution with parameter \(\mu\).
dDLD(x, mu, log = FALSE)
pDLD(q, mu, lower.tail = TRUE, log.p = FALSE)
qDLD(p, mu, lower.tail = TRUE, log.p = FALSE)
rDLD(n, mu = 0.5)
vector of (non-negative integer) quantiles.
vector of positive values of this parameter.
logical; if TRUE, probabilities p are given as log(p).
logical; if TRUE (default), probabilities are \(P[X <= x]\), otherwise, \(P[X > x]\).
vector of probabilities.
number of random values to return.
dDLD
gives the density, pDLD
gives the distribution
function, qDLD
gives the quantile function, rDLD
generates random deviates.
The Discrete Lindley distribution with parameters \(\mu\) has a support 0, 1, 2, ... and density given by
\(f(x | \mu) = \frac{e^{-\mu x}}{1 + \mu} \left[ \mu(1 - 2e^{-\mu}) + (1- e^{-\mu})(1+\mu x)\right]\)
Note: in this implementation we changed the original parameters \(\theta\) for \(\mu\), we did it to implement this distribution within gamlss framework.
Bakouch HS, Jazi MA, Nadarajah S (2014). “A new discrete distribution.” Statistics, 48(1), 200--240.
DLD.
# Example 1
# Plotting the mass function for different parameter values
plot(x=0:25, y=dDLD(x=0:25, mu=0.2),
type="h", lwd=2, col="dodgerblue", las=1,
ylab="P(X=x)", xlab="X", ylim=c(0, 0.1),
main="Probability mu=0.2")
plot(x=0:15, y=dDLD(x=0:15, mu=0.5),
type="h", lwd=2, col="tomato", las=1,
ylab="P(X=x)", xlab="X", ylim=c(0, 0.25),
main="Probability mu=0.5")
plot(x=0:8, y=dDLD(x=0:8, mu=1),
type="h", lwd=2, col="green4", las=1,
ylab="P(X=x)", xlab="X", ylim=c(0, 0.5),
main="Probability mu=1")
plot(x=0:5, y=dDLD(x=0:5, mu=2),
type="h", lwd=2, col="red", las=1,
ylab="P(X=x)", xlab="X", ylim=c(0, 1),
main="Probability mu=2")
# Example 2
# Checking if the cumulative curves converge to 1
x_max <- 10
cumulative_probs1 <- pDLD(q=0:x_max, mu=0.2)
cumulative_probs2 <- pDLD(q=0:x_max, mu=0.5)
cumulative_probs3 <- pDLD(q=0:x_max, mu=1)
cumulative_probs4 <- pDLD(q=0:x_max, mu=2)
plot(x=0:x_max, y=cumulative_probs1, col="dodgerblue",
type="o", las=1, ylim=c(0, 1),
main="Cumulative probability for Lindley",
xlab="X", ylab="Probability")
points(x=0:x_max, y=cumulative_probs2, type="o", col="tomato")
points(x=0:x_max, y=cumulative_probs3, type="o", col="green4")
points(x=0:x_max, y=cumulative_probs4, type="o", col="magenta")
legend("bottomright",
col=c("dodgerblue", "tomato", "green4", "magenta"), lwd=3,
legend=c("mu=0.2",
"mu=0.5",
"mu=1",
"mu=2"))
# Example 3
# Comparing the random generator output with
# the theoretical probabilities
mu <- 0.6
x <- rDLD(n = 1000, mu = mu)
x_max <- max(x)
probs1 <- dDLD(x = 0:x_max, mu = mu)
names(probs1) <- 0:x_max
probs2 <- prop.table(table(x))
cn <- union(names(probs1), names(probs2))
height <- rbind(probs1[cn], probs2[cn])
nombres <- cn
mp <- barplot(height, beside = TRUE, names.arg = nombres,
col=c('dodgerblue3','firebrick3'), las=1,
xlab='X', ylab='Proportion')
legend('topright',
legend=c('Theoretical', 'Simulated'),
bty='n', lwd=3,
col=c('dodgerblue3','firebrick3'), lty=1)
# Example 4
# Checking the quantile function
mu <- 0.9
p <- seq(from=0, to=1, by=0.01)
qxx <- qDLD(p, mu, lower.tail = TRUE, log.p = FALSE)
plot(p, qxx, type="S", lwd=2, col="green3", ylab="quantiles",
main="Quantiles of DL(mu=0.9)")