This function obtains the MLE of Sigma covariance matrix for a multivariate normal population. The result is the biased estimator for Sigma because the denominator is \(n\).

mle_sigma(x, mu = NULL)

Arguments

x

a data frame.

mu

the vector with the mean if known.

Examples

# This example consider the dataset from example 5.2 From Johnson and Wichern (2007) x1 <- c(3.7, 5.7, 3.8, 3.2, 3.1, 4.6, 2.4, 7.2, 6.7, 5.4, 3.9, 4.5, 3.5, 4.5, 1.5, 8.5, 4.5, 6.5, 4.1, 5.5) x2 <- c(48.5, 65.1, 47.2, 53.2, 55.5, 36.1, 24.8, 33.1, 47.4, 54.1, 36.9, 58.8, 27.8, 40.2, 13.5, 56.4, 71.6, 52.8, 44.1, 40.9) x3 <- c(9.3, 8, 10.9, 12, 9.7, 7.9, 14, 7.6, 8.5, 11.3, 12.7, 12.3, 9.8, 8.4, 10.1, 7.1, 8.2, 10.9, 11.2, 9.4) dt <- data.frame(x1, x2, x3) # Estimating Sigma assuming unknow mu mean vector mle_sigma(x=dt)
#> x1 x2 x3 #> x1 2.7354 9.5095 -1.718600 #> x2 9.5095 189.7990 -5.358000 #> x3 -1.7186 -5.3580 3.446275
# Estimating Sigma assuming known mu mean vector mle_sigma(x=dt, mu=c(4, 50, 10))
#> x1 x2 x3 #> x1 3.1450 6.5655 -1.7410 #> x2 6.5655 210.9590 -5.1970 #> x3 -1.7410 -5.1970 3.4475