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Abstract
In the fields of reliability engineering and survival analysis, it is common to find experiments
from which data characterized by non-monotonic hazard functions—such as bathtub-shaped
or unimodal functions—can be obtained. To model datasets like those mentioned, flexible
lifetime distributions are frequently proposed. However, many of these distributions are not
yet implemented in statistical software for fitting regression models. In this context, we have
developed the EstimationTools R package, which offers a general-purpose framework for fit-
ting and evaluating distributional regression models. This framework employs a syntax that
mirrors mathematical notation. We leveraged maximum likelihood estimation and computed
the log-likelihood function just using the probability mass/density function implemented in
the R global workspace. Our framework is particularly suited for datasets where the res-
ponse variable follows a flexible lifetime distribution, thereby enabling users to estimate
distribution parameters in relation to covariates, even with censored data. It also provides
graphical diagnostic tools through Martingale, Cox-Snell, Deviance and Randomized Quan-
tile Residuals. The software has been tested on well-known datasets from health sciences
and reliability studies, demonstrating its potential to develop models for applications such
as flood prediction, churn analysis, credit risk modeling, recidivism, and student dropout.
Overall, our work represents a versatile alternative for fitting parametric time-to-event mo-
dels.

Keywords: bathtub hazard, deviance residuals, distributional regression, flexible life-
time distributions, Martingale residuals, maximum likelihood estimation, randomized
quantile residuals.

Resumen
En los campos de la ingenieŕıa de confiabilidad y el análisis de supervivencia, es común
encontrar experimentos de los cuales se pueden obtener datos caracterizados por funciones
de riesgo no monótonas, tales como funciones en forma de bañera o unimodales. Para mode-
lar conjuntos de datos como los mencionados, se proponen frecuentemente distribuciones de
vida útil flexibles. Sin embargo, muchas de estas distribuciones aún no están implementadas
en software estad́ıstico para ajustar modelos de regresión. En este contexto, hemos desarro-
llado el paquete R EstimationTools, que ofrece un marco de trabajo de propósito general
para ajustar y evaluar modelos de regresión distribucional. Este marco utiliza una sinta-
xis que refleja la notación matemática. Utilizamos la estimación de máxima verosimilitud y
calculamos la función de log-verosimilitud basada en la función de masa/densidad de proba-
bilidad implementada en el espacio de trabajo global de R. Nuestro marco es particularmente
adecuado para conjuntos de datos donde la variable de respuesta sigue una distribución de



x

vida útil flexible, lo que permite a los usuarios estimar parámetros de distribución en re-
lación con covariables, incluso con datos censurados. También proporciona herramientas de
diagnóstico gráfico a través de residuos de Martingala, Cox-Snell y Deviance. El software ha
sido probado en conjuntos de datos bien conocidos de las ciencias de la salud y estudios de
confiabilidad, demostrando su potencial para desarrollar modelos para aplicaciones como la
predicción de inundaciones, análisis de abandono de clientes, modelado de riesgo crediticio,
reincidencia y deserción estudiantil. En general, nuestro trabajo representa una alternativa
versátil para ajustar modelos paramétricos de tiempo hasta el evento.

Palabras clave: función hazard en forma de bañera, residuos deviance, regresión dis-
tribucional, distribuciones de vida útil flexibles, residuos de Martingala, estimación de
máxima verosimilitud, residuos cuantil aleatorizados.
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1. Introduction

”
Begin challenging your own assumptions. Your assum-
ptions are your windows on the world. Scrub them off
every once in a while, or the light won’t come in.

— Alan Alda

(Actor, director and writer)

In survival analysis and reliability engineering, it is usual to perform estimation with a para-
metric approach in order to model duration times. For this purpose, the Weibull distribution
is the most popular and the most widely used in reliability and lifetime data analysis (Almalki
and Nadarajah, 2014). However, this and other traditional distributions in such areas (such
as normal, exponential, gamma, log-normal, and log-logistic) are not flexible because they
may only generate new non-monotonic and/or unimodal curves for the hazard function. This
is inadequate to interpret data that do not have such characteristics (Ortega et al., 2011), for
example, those that are modelled with the bathtub-shaped hazard function, among others.
Therefore, distributions that cover other families and particular cases have been proposed,
which give them flexibility and allow them to have curves with different shapes.

Additionally, many flexible lifetime distributions are not yet available in the aforementioned
packages or in any statistical software, which is an obstacle making estimations quickly
and reliably. In addition, there are regression models only for some of them, so they are not
available to model the heterogeneity of a population or to study lifetime behaviour regarding
covariates (Lawless, 2002) in survival and reliability applications.

1.1. Illustrative examples

This section presents parameter estimation with two datasets of duration times that are
effectively modelled with flexible lifetime distributions. These application examples will be
found throughout this thesis.
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1.1.1. Time to failure on electronic equipment
This application example consists of an experiment in which data represent the time to fail
(in hours) of 18 electronic devices and they are showed in table 1-1. The results of this test
are analysed by Wang (2000) and Cooray (2015) in order to model failure times.

Table 1-1: Failure times of 18 electronic devices (Wang, 2000; Cooray, 2015).

5 11 21 31 46 75
98 122 145 165 195 224
245 293 321 330 350 420

As we all know, a positive-valued distribution is necessary to model this type of dataset.
Therefore, we chose the Weibull I1distribution, whose probability density function (PDF) is
shown in equation 1-1

f(t|µ, σ) = µσtσ−1 exp (−µtσ), t > 0, (1-1)

with µ, σ > 0 and t denoting the time. We also employed the odd Weibull distribution (OW)
proposed by Cooray (2015). Its PDF is given by the following expression:

f(t|µ, σ, ν) = µσνtσ−1 exp (µtσ)(exp (µtσ) − 1)ν−1[1 + (exp (µtσ) − 1)ν ]−2, t > 0, (1-2)

with µ, σ, ν > 0. The Kaplan-Meier estimator and estimated hazard functions are illustrated
in figure 1-1. As can be seen in the plots and AIC values, the odd Weibull distribution
generates a better fit and can produce a bathtub-shaped hazard rate function.

1.1.2. Head and neck cancer data
The data correspond to a randomised clinical trial to compare two therapies for head and
neck cancer shown in table 1-2 described by Efron (1988): 51 patients were treated with
radiation only, 45 patients were treated with radiation plus chemotherapy, and the response
variable was the survival times in days.

1Weibull I refers to a specific parameterization of the Weibull distribution. In this document, we present
three versions; therefore, you will encounter Weibull II and Weibull III later on. This arrangement has
been established to facilitate a comparative analysis between the standard Weibull distribution and its
extensions.
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Figure 1-1: Estimated survival curves (left) and estimated hazard curves (right) for the
time to failure on electronic equipment using Weibull and odd Weibull models.
The dark curve on the left side corresponds to the Kaplan-Meier estimator for
the dataset (Kaplan and Meier, 1958).

Table 1-2: Head and neck cancer data (Efron, 1988).
Radiation Radiation + Chemotherapy

Time Status Time Status

7 1 37 1
34 1 84 1
42 1 92 1
63 1 94 1
64 1 110 1

74 0 112 1
83 1 119 1
84 1 127 1
91 1 130 1
108 1 133 1

112 1 140 1
129 1 146 1
133 1 155 1
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Table 1-2: Head and neck cancer data (Efron, 1988). (continued)
Radiation Radiation + Chemotherapy

Time Status Time Status

133 1 159 1
139 1 169 0

140 1 173 1
140 1 179 1
146 1 194 1
149 1 195 1
154 1 209 1

157 1 249 1
160 1 281 1
160 1 319 1
165 1 339 1
173 1 432 1

176 1 469 1
185 0 519 1
218 1 528 0
225 1 547 0
241 1 613 0

248 1 633 1
273 1 725 1
277 1 759 0
279 0 817 1
297 1 1092 0

319 0 1245 0
405 1 1331 0
417 1 1557 1
420 1 1642 0
440 1 1771 0

523 1 1776 1
523 0 1897 0
583 1 2023 0
594 1 2146 0
1101 1 2297 0

1116 0
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Table 1-2: Head and neck cancer data (Efron, 1988). (continued)
Radiation Radiation + Chemotherapy

Time Status Time Status

1146 1
1226 0
1349 0
1412 0

1417 1

Khan (2018) fitted the Weibull accelerated failure time (AFT) model (usually used) and
proposed a new AFT exponentiated Weibull (EW) model using the treatment status as a
covariate. Because AFT models are not the focus of this project, we fitted both Weibull
and odd Weibull models with direct estimation by maximum likelihood. The Weibull II
distribution (WEI) is fitted with the following parametrization2

f(t|ρ, κ) = κρ (ρt)κ−1 exp [− (ρt)κ] , t > 0, (1-3)

where ρ, κ > 0. The corresponding model equation is shown below

Ti ∼ WEI(ρi, κ), (1-4)
. log(ρi) = β01 + β11xi, (1-5)

log(κ) = β02, (1-6)

where Ti is the response variable, βjk are the regression parameters (with j = 0, 1 and
k = 1, 2) and xi is the covariate for data point i. The EW distribution is expressed as

f(t|ρ, κ, γ) = κργ (ρt)κ−1 exp [− (ρt)κ] {1 − exp [− (ρt)κ]} , t > 0, (1-7)

with ρ, κ, γ > 0. The model equation is as follows:

2Khan (2018) expressed the Weibull distribution using the rate parameter ρ, which directly represents the
instantaneous failure rate of a component or system. Consequently, he chose an EW parametrization to
be consistent with this characterisation.
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Ti ∼ EW (ρi, κ, γ), (1-8)
log(ρi) = β01 + β11xi, (1-9)
log(κ) = β02, (1-10)
log(γ) = β03. (1-11)

The indicator variable is a binary variable that takes on the value of either 1 or 0, indica-
ting that the treatment involves radiation therapy alone or radiation plus chemotherapy, as
follows:

xi =
1 if subject i receives the radiation therapy only,

0 if subject i receives radiation plus chemotherap.
(1-12)

The estimation under these two models is illustrated in figure 1-2. AIC values and survival
function plots show an improvement when the EW distribution is fitted instead of the Weibull
distribution.
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(a) Plot of Weibull survival functions.
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(b) Plot of EW survival functions.

Figure 1-2: Fit for Weibull (AIC = 1082.519) and exponentiated Weibull (AIC =
1064.556) distributions.
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1.2. Structure of the document
The rest of the document describes our approach to fit lifetime distributions. Chapter 2
presents a literature review that comprises a conceptual framework and the background of
estimation in lifetime distributions. The following chapters introduces the EstimationTools R
package, available in the CRAN (https://cran.rstudio.com/web/packages/EstimationTools/
index.html) or in the GitHub development repository (https://github.com/Jaimemosg/
EstimationTools). Consequently, chapter 3 presents our TTT plot implementation as an
exploratory tool, and chapter 4 introduces the importance of high-precision computations
in estimation, an essential aspect of our work; chapters 5 and 6 discuss estimation without
covariates and regression models for flexible lifetime distributions, respectively. The latter
contains the formulation of the regression models addressed by this project and introduces
our estimation routines. Chapter 7 shows the implementation of residuals and graphic tools
for diagnostics.

Despite many distributions and packages available to fit these types of models, a wide variety
of these novel distributions are not yet available in some statistical software for general
use, and hence many of them are not available in such a way that it is possible to fit
linear regression models of their parameters in a straightforward way. Owing to this fact,
the remainder of this document is about the odd Weibull distribution and its applications.
Finally, in Chapter 9, some conclusions and future lines of work are offered.

Enjoy your read!

https://cran.rstudio.com/web/packages/EstimationTools/index.html
https://cran.rstudio.com/web/packages/EstimationTools/index.html
https://github.com/Jaimemosg/EstimationTools
https://github.com/Jaimemosg/EstimationTools
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”
Obey the principles without being bound by them.

— Bruce Lee

(Martial artist and actor)

Lifetime modelling is a central problem in survival analysis and reliability. Lifetime distri-
butions are constantly proposed as an improvement with respect to classical distributions
because they allow the modelling of different situations with a good fit. To use them, it is
sufficient to have good estimation algorithms. In this chapter, we examine some concepts
and definitions that provide the foundations of this document.

2.1. Censoring
Censoring is a condition that appears when there is a partial knowledge of the survival time
observed in a sample unit (Prinja et al., 2010). There are three main censoring types (Leung
et al., 1997):

• Right censoring: it occurs when the time in which the event of interest occurred exceeds
a specific value, but such value is unknown.

• Left censoring: it occurs when the sample unit shows the event of interest before starting
the study although the exact time is unknown. It is presented in clinical trials and other
studies in which the starting point is defined.

• Interval censoring: it occurs when the time in which the event of interest occurs is
between two values, but such a value is unknown.

The three censoring types are illustrated in figure 2-1.

It is worth noting that there exists another more specific classification for right censoring
(Lee and Wang, 2003; Colosimo and Ruiz Giolo, 2006a):

Type I censoring: it occurs in studies completed within a specific time with right-
censored sample units.
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Figure 2-1: Illustration of censoring types (Gruman, 2021).

Type II censoring: This occurs in studies whose completion is given by the observation
of a predetermined number of events, so the remaining ones are right-censored events.

Estimation procedures must regard censored data points as they are present in the working
dataset. Despite being incomplete, censored observations provide a piece of information
about a subject’s lifetime. Furthermore, omitting the censoring indicator in the computation
of relevant statistics may lead to erroneous conclusions (Colosimo and Ruiz Giolo, 2006a).

2.2. Flexible lifetime distributions
The parametric statistics approach consists of using mathematical models to describe the
frequency distribution of a population. Fisher (1958), in his work entitled Statistical Methods
for Research Workers, assigned to these models the name of probability distributions and
justified their application by arguing that such models provide the possibility to make predic-
tions of the population from the sample. In particular, lifetime distributions have been useful
for modelling experimental results and observational data in reliability, survival analysis, and
actuarial areas (Marshall and Olkin, 2007).

One of the problems with this type of data is the remoteness of normality, mainly due to the
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analysis of time measurements or event counts, which are variables characterised by having a
positive support (Meeker and Escobar, 1998). A key step whereby a solution to this problem
was found by the Swedish scientist Waloddi Weibull. He proposed a cumulative density
function for a component of multiple parts intuitively, from an exponential function, and
then he added two parameters to give it flexibility. In his work, he showed that his function
adjusted to seven different applications, ranging from modelling steel resistance fatigue to
the height of the men who inhabited the British islands by that time. For further details,
please read the Weibull’s seminal work (Weibull, 1951).

From then on, new distributions have been created that arise from modifications of the
Weibull distribution (Almalki and Nadarajah, 2014). These distributions may be classified
within a taxonomy; whose grouping criterion is the distribution creation method. According
to Murthy et al. (2004), there are five groups of modifications for the univariate Weibull
distribution. Although thousands of different functions have been created, the following ones
are some of them:

• Type I models: they emerge by transforming a Weibull variable. This is the case for
the generalized extreme value distribution (Gumbel, 1941, 1958), the reflected Weibull
distribution (Cohen, 1973), the inverse Weibull distribution (Drapella, 1993), the odd
Weibull distribution (Cooray, 2006), the flexible Weibull (Bebbington et al., 2007).

• Type II models: they emerge from the generalisation of a Weibull distribution, which
is achieved by adding new shape parameters. Distributions belonging to this group
include the exponentiated Weibull (Mudholkar and Srivastava, 1993), the new modified
Weibull distribution (Lai et al., 2003), the power generalized Weibull (Nikulin and
Haghighi, 2007), the generalized modified Weibull (Carrasco et al., 2008) and the
Weibull-Kumaraswamy (Cordeiro et al., 2010).

• Type III models: they emerge from the mix of one or more distributions. This
category includes the Weibull-gamma distributions (Stacy, 1962), the additive Weibull
(Xie and Lai, 1996), the beta-Weibull (Famoye et al., 2005) and the beta-Weibull
Poisson (Percontini et al., 2013).

• Type IV models: they correspond to Weibull models of the original family that have
parameters that vary over time.

• Type V models: they are discrete versions of the standard Weibull distribution.
Different parametrizations of the discrete Weibull distribution stand out: the discrete
inverse Weibull (Nakagawa and Osaki, 1975; Stein and Dattero, 1984; Padgett and
Spurrier, 1985) and the discrete additive Weibull (Shafaei Nooghabi et al., 2011).

In recent years, packages for R programming language have been developed, such as New-
distns, with distributions applicable to the reliability area (Nadarajah and Rocha, 2016) or
FAdist, with useful distributions to make predictions of time between floods (Aucoin, 2015),
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just mentioning two of them.

Weibull extensions, such as those mentioned above and other novel families with more than
two parameters, correspond to what is known as flexible distributions (Ñı́guez et al., 2019).
These distributions can model skewness and kurtosis, and describe the mean and standard
deviation much like two-parameter distributions normally do (Zhao et al., 2018). Moreover,
they provide a wider range of shapes for the hazard rate function, which is particularly useful
in survival analysis and reliability (Nair et al., 2018).

Flexible lifetime distributions arise when flexible distributions are used to model and analyse
lifetime data. In this context, lifetime refers to situations in which the time to the occurrence
of an event is of interest to individuals in some population (Lawless, 2003).

2.3. Maximum likelihood estimation
Let be y⊤ = (y1, y2, ..., yn) a random variable of n lifetime data points drawn from a popu-
lation with distribution function f(·|θ), where y ∈ S and θ ∈ Θ, with Θ is the parameter
space of dimension p. Moreover, consider that S ∈ Rk and Θ ∈ Rk.

The likelihood function of θ for non-censored data is defined as follows:

L(θ|y) =
n∏

i=1
f(yi|θ). (2-1)

The maximum likelihood estimators (MLEs) are the values of the components in the para-
meter vector θ̂ that maximises the likelihood function L(·). For convenience, it is common
to maximise the log-likelihood function, l(·). In short, the goal is

θ̂ = arg máx
θ∈Θ

l(θ|y), (2-2)

where

l(θ|y) = log L(θ|y). (2-3)

For censored samples, there are some additional likelihood contributions (Turkson et al.,
2021)

Li(θ|yi) = f(y|θ) for observed events,

Li(θ|yi) = Pθ(Yi > yi) = S(yi|θ) for right-censored observations,

Li(θ|yi) = Pθ(Yi < yi) = F (yi|θ) for left-censored observations,
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where Yi and yi are the random variable and its corresponding value respectively, f(·) is the
probability density function, S(·) is the survival function and F (·) is the cumulative density
function. The generalised likelihood function becomes the following

l(θ|y) = log
(

n∏
i=1

[f(yi|θ)]ri1 [S(yi|θ)]ri2 [F (yi|θ)]ri3

)
, (2-4)

where Ril is an element of the status matrix R defined as follows:

Ril =
1, if sample unit i has status l,

0, in other case,
(2-5)

is the status matrix, with i = 1, 2, . . . , n and l = 1, 2, 3, with l = 1 for observed events, l = 2
for right-censored data, and l = 3 for left censored data.

The entire development and application of the maximum likelihood method revolves around
the likelihood principle, whereby all the evidence of the sample to model parameters is
contained in the likelihood function (Fisher, 1922). This principle has allowed the extension
of the maximum likelihood method to estimate parameter regression models.

The maximisation of the likelihood is an optimisation problem regularly addressed by using
the first derivative method, as proposed to estimate parameters in probability density fun-
ctions (Fisher, 1912). In many cases, non-linear equation systems are generated from this
procedure. To find a solution, numerical methods derived from the Newton-Raphson method
have been used, and various non-gradient-based algorithms have been proposed.

2.3.1. Regularity Conditions
Rossi (2018) points that properties of MLEs rely on certain characteristics of the probability
function f(yi|θ) known as weak regularity conditions. The function f(yi|θ) is said to satisfy
these conditions if

1. The score function is always defined, or equivalently

∂

∂θ
log(f(yi|θ)) < ∞, ∀y and ∀θ ∈ Θ.

2. When computing the expected value

a. For any statistic T (y),
∂

∂θ

∫
S

T (y)f(θ|y)dy =
∫

S
T (y) ∂

∂θ
f(θ|y)dy, ∀θ ∈ Θ,
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when f(yi|θ) is the probability function of a continuous random variable.

b. For any statistic T (y),

∂

∂θ

∑
S

T (y)f(θ|y) =
∑
S

T (y) ∂

∂θ
f(θ|y), ∀θ ∈ Θ,

when f(yi|θ) is the probability function of a discrete random variable.

3. The expected Fisher information I(·) always exists, that is:

I(θ) = −E
[

∂2

∂2θ
log(f(yi|θ))

]
= E

( ∂

∂θ
log(f(yi|θ))

)2
 < ∞, ∀θ ∈ Θ.

2.3.2. Standard error computation
The variance-covariance matrix of the MLEs is given by

Var (θ̂) = J −1(θ̂) = C(θ̂), (2-6)

where J (·) is the observed Fisher information matrix

J (θ̂) = ∂2

∂θ2 log(f(yi|θ)). (2-7)

The standard errors can be calculated as the square root of the diagonal elements of matrix
C (Pawitan, 2013b)

S.E(θ̂) =
√

Cjj(θ̂). (2-8)

2.3.3. Properties of the MLEs
MLEs are functionally invariant and they are functions of sufficient statistics. When eva-
luated on a finite sample size, they have no optimum properties, in particular, they suffer
of second order deficiency (Stigler, 2005). However, when the sample size tends to infinity,
these estimators are unbiased, consistent, efficient, and asymptotically normal distributed.
Let’s see in more detail below.
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Large sample properties

According to Rossi (2018), if the regularity conditions above-stated in sub-section 2.3.1 are
satisfied by f(·|θ), for Θ ∈ R, and the sample size tends to infinity, then:

i) θ̂ is an asymptotically unbiased estimator of θ.

ii) θ̂ is MSE-consistent1 for θ, i.e,
θ̂

P→ θ.

iii) θ̂ is asymptotically normal, i.e.,
√

n(θ̂ − θ) d→ N
(
0, [I(θ)]−1

)
.

iv) θ̂ is asymptotically efficient estimator of θ, which means that it achieves the Cramer-
Rao lower bound of the variance.

Minimum-variance estimator

Because of the large sample properties i) and iv), the MLE is the UMVUE (uniformly
minimum-variance unbiased estimator), which means that

Cov (θ̂) ≥
[
I(θ̂)

]−1
.

This can be also be verified by using both theorems mentioned below. Let’s see it.

Theorem If Y1, ..., Yn is a sample of iid random variables with PDF f(yi|θ) for θ ∈ Θ, T is
a sufficient statistic for θ and θ̂ is the unique MLE of θ, then θ̂ is function of the sufficient
statistic T (Rossi, 2018).

According to the previous theorem, if θ̂ is a MLE, then its j − th element, θ̂j, is a function of
sufficient statistics. Using this result with the Lehmann-Sheffé theorem (Casella and Berger,
2002), one can conclude that θ̂ is a unique UMVUE of θ.

Invariance property

If θ̂ is the MLE of θ, and the function g(θ) is any transformation of θ, then the MLE of
g(θ) is g(θ̂) (Casella and Berger, 2002).

1When the MSE (mean square error) of an estimator θ̂ of θ goes to zero as sample size n goes to infinity,
the estimator θ̂ can be made as accurate as desired by taking a sufficiently large sample. In this case, the
estimator θ̂ is said to be an MSE-consistent estimator of θ (Rossi, 2018).



16 2 Theoretical framework

2.4. Numerical Optimization
The following numerical methods are used to solve systems of equations arising from the
likelihood maximisation process to estimate parameters.

2.4.1. Newton-Raphson
The procedure of the equation(2-2) is made by means of an optimisation with the first
derivative method. If ∇l(θ|y) is the gradient of the log-likelihood function regarding the
parameter vector, then the value that maximizes the log-likelihood function is calculated by
solving the following equation system:

∇l(θ|y) = ∂l(θ|y)
∂θ

= 0. (2-9)

A first-order Taylor series expansion at θn (in iteration n) for the gradient of the log-likelihood
function is equivalent to

∇l(θ|y) ≈ ∇l(θn|y) + [H(θn)] (θ − θn) , (2-10)

where

H(θ) = −∂2l(θ|y)
∂θ2 ,

is the Hessian matrix for the log-likelihood function. To maximise the equation (2-9), the
right side of the equation (2-10) must be equal to zero

∇l(θn|y) + [H(θn)] (θ − θn) = 0. (2-11)

By solving θ, the resulting expression is a recurrence formula for iteratively calculating the
value of the parameter vector. Because the calculated value approximates the true value in
each iteration, θ is replaced in the recurrence formula by θn+1, as follows:

θn+1 = θn − [H(θn)]−1 [∇l(θn|y)] = θn − [J (θn)]−1 [∇l(θn|y)] (2-12)

where J , in the statistics context, is called the observed Fisher information. This algorithm
is based on quadratic approximations of the log-likelihood function (Lange, 2010, Cap. 11).
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2.4.2. Quasi-Newton method
The quasi-Newton method is variation of Newton-Raphson algorithm which can be used in
optimisation problems. In the context of log-likelihood maximisation, its recursive formula
is as follows:

θn+1 = θn − [B(θn)]−1 [∇l(θn|y)] , (2-13)

where ∇l(θn) is the gradient of the objective function evaluated at θn and B(θn) is the
approximated Hessian matrix (Fletcher, 1987). The family of quasi-Newton methods always
relies on a starting set of parameters θ0, and an initial approximate Hessian matrix, which is
set depending on the implementation. For example, the BFGS (Broyden-Fletcher-Goldfarb-
Shanno) uses an identity matrix as the initial approximate inverse Hessian, so the first search
direction is steepest descents (Nash, 2014b, Cap. 2). Update of approximate Hessian B(θn)
is calculated by gradient evaluations

Bn+1(θn+1 − θn) = ∇l(θn+1|y) − ∇l(θn|y). (2-14)

L-BFGS-B method is a limited-memory version of BFGS that undertakes problems with simple
box constraints (Byrd et al., 1995).

2.4.3. Nonlinear conjugate gradient method
This is another family of gradient optimisers. This method is useful when minimising an
approximately quadratic form with the Hessian as a constant positive definite matrix (Nash,
2014a, Cap. 2). The algorithms have the following steps.

Step 1 - Initiation: step 1 provides the starting parameters θ0 and compute l(θ0) and
∇l(θ0). The initial search direction is the negative gradient, thus:

∆θ0 = −∇l(θ0), (2-15)

and determine the step length using a line search

α0 := arg mı́n
α

l(θ0 + α∆θ0), (2-16)

∆θ1 = ∆θ0 + α0∆θ0. (2-17)
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Step 2 - Iteration: step 2 computes the gradient at the new point and uses it

∆θn = −∇l(θn), (2-18)

Then, compute the new direction as follows:

sn = ∆θ0 + βnsn−1, (2-19)

where βn is a coefficient that determines the search direction. There are several formulas
to compute it (visit Fletcher (1964); Dai and Yuan (1999); Wang and Li (2011) for further
information). Finally, another line search must be performed, thus,

αn = arg mı́n
α

l(θn + αn−1sn), (2-20)

and the new position is updated

θn+1 = ∆θn + αnsn. (2-21)

Step 3 - Termination: The algorithm terminates when no progress is made after a direction
reset or when some tolerance criterion is reached.

2.4.4. Nelder-Mead algorithm
The Nelder-Mead algorithm is a direct search simplex-based iterative method devised to solve
unconstrained and box-constrained minimisation problems. According to Nelder and Mead
(1965), consider a set of k + 1 vertices in the parameter space {θj} ∈ Rk, with j = 0, 1, ..., k

the points of a simplex S, and its corresponding function values l(θj) = fj. Let be,

fh = max
j

(fj), (2-22)

fl = min
j

(fj), (2-23)

the maximum and minimum values for the objective function and

θ̄ = 1
n

∑
j ̸=h

θj, (2-24)
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is the centroid of the points. The procedure involves the following steps (Singer and Nelder,
2009).

Initial Simplex: The method begins with a non-degenerate simplex. This condition is
satisfied when the points {θ0, θ1, ..., θn} do not lie in the same hyperplane.

Transformations: The method applies some transformations in each step (reflection,
contraction and expansion) to the vertex with a greater function value in each step to
decrease it.

Reflection: the transformation is performed using the following expression:

θR = θ̄ + α1(θ̄ − θh). (2-25)

It is an attempt to move away the simplex from the highest point θh, replacing it with
the point θR. α1 is a positive constant called reflection coefficient. If fR lies between
fh and fl, then θh is replaced by θR and we start again with the new simplex.

Expansion: if fR < fl, then θR is transformed as follows

θE = θ̄ + α2(θR − θ̄). (2-26)

This is a movement a little bit more away from θh (the old one). α2 > 1 is another
constant called expansion coefficient. If fE < fl, θh is replaced by θE, otherwise, θh is
replaced by θR.

Contraction: if fR > fl ∀i ̸= h, then we define a new θh to be either the old θh or θR,
whichever has the lower value of f , and we apply the following transformation

θC = θ̄ + α3(θh − θ̄). (2-27)

This is a movement in opposite direction of the previous exploration made with reflec-
tion transformation. 0 < α3 < 1 is the contraction coefficient. We replace θh with θC

unless fC > mı́n(fh, fR); in this case, all θi are replaced by (θi + θl)/2 and restart the
process.

Termination: The algorithm ends when the standard error of the function values at the
vertices of simplex is less than a tolerance value, or when iterations number is reached, and
the solution is given by the centroid of the last simplex.
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2.4.5. Implementations in R
R (R Core Team, 2023) is a free language developed for statistical computing and equip-
ped with unconstrained and box-constrained general-purpose optimization tools. Maximum
likelihood estimation can be performed with these tools only if users implements the (log-
)likelihood as the objective function themselves.

Implementations of the aforementioned optimization tools are in stats package: Nash (1979)
implemented optim, a function that performs optimization based on three algorithms: (1)
Nelder and Mead (1965), (2) quasi-Newton (BFGS) and (3) conjugate-gradient (CG); Fox
et al. (1978) developed the function nlminb for optimization using PORT (portable Fortran
programs for numerical computation) routines.

Improvements in CG implementation in optim where made by Dai and Yuan (2001), which
was implemented in Rcgmin (Nash, 2014c) for bounded and unbounded minimization pro-
blems. Moreover, Nielsen and Mortensen (2016) developed the package ucminf, with an
alternative implementation of unbounded BFGS, updating of the inverse Hessian and soft
line search with a trust region type monitoring of the input to the line search algorithm.
Nash (2018) reimplemented this method in Rvmmin package in order to enable constrained
minimization.

2.5. Survival analysis and regression models
Lifetime distributions themselves are an improvement respect to classical distributions be-
cause they allows to model different situations with a good fitting. To use them, it is enough
to have good estimation algorithms. However, estimation with no covariates is not always
suitable to analyse the results from clinical trials in survival analysis or accelerated life test
for reliability. In such situations, the inclusion of explanatory variables is necessary. From the
classic statistics approach, modelling proposals have been made based on regression analysis.

In this section, we present relevant proposals referring to computational routine processes
for parameter estimation, as well as modelling proposals developed in the framework of the
regression models.

2.5.1. Accelerated failure time models
These models have a particular interest to adjust data of accelerated failure time tests. Its
mathematical form arises from the assumption that the experimental units associated with
the treatment i are different from those associated with the treatment j in terms of survival
by a factor or acceleration rate ϕ (Kalbfleisch and Prentice, 2002)
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Si(t) = Sj(ϕt), (2-28)

where for the hazard function and for the probability density function, the following is
fulfilled:

hi(t) = ϕhj(ϕt), fi(t) = ϕfj(ϕt), (2-29)

where h(·) is the hazard function and f(·) is the probability density function. The final result
is an ordinary regression model for the logarithm of the survival times, as follows:

log Ti = X⊤β + σϵi. (2-30)

The distribution of the residuals ϵi depends on the distribution of T . In reliability engineering,
it is common to work with the distributions of Weibull, generalized gamma, log-normal,
and log-logistic, which correspond to residuals that include Gumbel, normal, and logistic
distributions, respectively. However, this approach has also been used to create regression
models of families that are generalisations of the traditional ones, such as the case of the
log-generalized modified Weibull distribution (Ortega et al., 2011).

2.5.2. Distributional regression models
A more recent approach to model data coming from experiments in survival analysis consists
of adjusting the parameters of a distribution selected in terms of explanatory variables. This
strategy was adopted as an alternative to model data from an accelerated failure time tests
of a high-strength alloy. These data were used to model the scale parameter and the Weibull
distribution shape parameter. Although the effects of the covariates were not significant for
the shape parameter, their use improved the predictions of the model (Escobar and Meeker,
2006).

Another development in this direction is related to GAMLSS (Generalized Additive Models
for Location, Shape and Scale) by Rigby and Stasinopoulos (2005). Within this framework,
it is possible to implement any distribution that has four parameters or less and estimate
its parameters in terms of covariates from a penalised log-likelihood function. This proposal
includes the creation of gamlss package (Stasinopoulos and Rigby, 2007). It is possible to per-
form parameter estimation of any distribution implemented as a gamlss.family structure.
Visit Stasinopoulos et al. (2017b) for more details.

Finally, the regression models for the exponentiated Weibull family with the non-constant
shape parameter stand out, whose estimations are obtained via maximum likelihood (Ma-
zucheli et al., 2013) was developed under the GAMLSS framework.



3. Total Time on Test (TTT) Transform

”
It is a capital mistake to theorize before one has da-
ta. Insensibly one begins to twist facts to suit theories,
instead of theories to suit facts.

— Sherlock Holmes

(The best detective)

Estimation of parameters via maximum likelihood estimation has been detailed in the pre-
vious chapter. This technique and other recurrent techniques in statistics and machine lear-
ning are based on numerical methods for optimisation, i.e, these solutions are not closed and
are obtained using computational algorithms.

Sometimes it is useful to perform a deep EDA (exploratory data analysis) in order to get
insights for guiding numerical search of parameters. The empirical total time on test (TTT)
transform is frequently used for investigating the hazard shape corresponding to a given
dataset. This is particularly useful for flexible distributions (Cooray [2006], Panja and Ray
[2007], Granzotto et al. [2018], Abdi et al. [2019], among others).

In this chapter we show the implementation of TTT plot in R in order to enhance MLE.

3.1. TTT Transform
Let T0 ≤ T1 ≤ · · · ≤ Tn a complete ordered sample of times to failure from n identical
nonrepairable1 units with distribution F (t) and survival function S(t) = 1 − F (t) (Bergman
and Klefsjo, 1984). The TTT transform HF −1(u) can be defined as

HF −1(u) =
∫ F −1(u)

0
S(t)dt, 0 ≤ u ≤ 1. (3-1)

Example 3.1.1. Exponential distribution (Nachlas, 2017)
1In other words, we measure the time to a specific event that occurs, which is a single, irreversible transition.

The event in question may be death, disease occurrence, disease recurrence or recovery in a medical
context, churning in a business context, or machine failure in an engineering context.
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Let’s recall the exponential lifetime distribution with rate parameter ρ

f(t|ρ) = ρ exp(−ρt), t > 0, (3-2)

with ρ > 0. If a population of devices has this distribution with ρ = 0.84, then F (0.75) =
0.467. To illustrate how to calculate the TTT transform, we compute it at u = 0.467

HF −1(u = 0.467) =
∫ F −1(0.467)

0
S(t)dt =

∫ 0.75

0
exp(−ρt)dt = 1 − exp(−0.75ρ)

ρ
= 0.467

0.84 = 0.556

□

3.1.1. TTT transform properties
The TTT transform has two important properties that can be used to derive the criteria for
characterising the hazard function shape.

Property 1 - Relation with the mean When u = 1, TTT transform yields to the mean of
the random variable, i.e

HF −1(u = 1) =
∫ F −1(u=1)

0
S(t)dt =

∫ ∞

0
S(t)dt = E(T ), (3-3)

where T is a positive random variable that follows a lifetime distribution. The relationship
between the integral of the survival function and the expected value is proved in the Appendix
A.

Property 2 - Derivative of the TTT transform The derivative of the TTT transform
evaluated at any point in the cumulative failure probability is equivalent to the reciprocal of
the corresponding value of the hazard function,

d

du
HF −1(u) = 1

h(t) . (3-4)

Further details about the proof can be found in the Appendix B.

In survival analysis, it is common to address the scaled TTT transform ϕ(u), whose expres-
sion is given by
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ϕ(u) = HF −1(u)
H−1

F (1)
, (3-5)

where

HF −1(1) =
∫ ∞

0
S(t)dt. (3-6)

3.2. TTT plot
The sample counterpart of the scaled TTT transform is the TTT-statistic, also known as
empirical TTT, given by the following expression:

ϕn

(
i

n

)
= HF −1(i/n)

HF −1(1) . (3-7)

For non-censored data the scaled empirical TTT can be computed from the empirical pro-
bability function. The resulting expression is the Barlow estimator (Aarset, 1987), given
by

ϕn

(
i

n

)
=

(
i∑

j=1
T(j)

)
+ (n − i)T(i)

n∑
i=j

Tj

, (3-8)

where T(i) is the r th order statistic, with T(0) = 0, r = 1, 2, . . . , n, and n being the sample
size. For censored data, scaled empirical TTT can be computed using the expression of
Kaplan-Meier survival estimator based on expressions Westberg and Klefsjö (1994).

ϕn

(
i

n

)
=

i∑
j=1

[
j∏

k=1

(
1 − bk

ck

)] (
T(j) − T(j−1)

)
n∑

j=1

[
j∏

k=1

(
1 − bk

ck

)
(Tj − Tj−1)

] , (3-9)

where bk is the number of events and ck is the number of units at risk until time k. In
appendix Appendix C we show how to obtain equation 3-9.

It is interesting to recall that the TTT plot (plot of empirical TTT transform vs. empirical
probability) can be used as an exploratory tool. Using expression 3-8 or 3-9 the values of i

n

and ϕn

(
i
n

)
are calculated and a scatter diagram is plotted with them, which gives rise to the

TTT plot. It is possible to identify hazard function shapes described by data as decreasing,
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increasing, bathtub, and unimodal if the shape of the points (or curve) obtained in TTT
transform is convex, concave, convex then concave, and concave then convex, respectively.

3.2.1. Illustration
Consider the Generalized Weibull family (GWF) by Mudholkar and Kollia (1994). The PDF
is

f(x|µ, σ, ν) = µσxσ−1 (1 − µνxσ)
1
ν

−1 , t > 0, (3-10)

with µ, σ > 0 and −∞ < ν < ∞. The CDF is

F (x|µ, σ, ν) = 1 − (1 − µνqσ)
1
ν , (3-11)

and the hazard rate function is
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(a) Hazard functions.
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(b) TTT plots.

Figure 3-1: Different hazard function shapes (left) and their corresponding TTT plots sha-
pes (right) with simulated data using the Generaized Weibull Family (sam-
ple size of 20000 in each case). Umimodal shape correposponds to GWF (µ =
15, σ = 1.7, ν = −0.7); decreasing shape to GWF (µ = 2, σ = 0.5, ν = −2);
bathtub shape to GWF (µ = 1, σ = 0.5, ν = 1) and incresing shape to
GWF (µ = 2.1, σ = 5, ν = 0.5).
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h(x|µ, σ, ν) = µσxσ−1 (1 − µνxσ)−1 . (3-12)

Some examples of TTT plots and their corresponding hazard functions are illustrated in
figure 3-1. We simulated the data using the GWF and the Barlow estimator from equation
3-8.

3.3. Implementation and Features
We implemented the TTT transform in the TTTE_Analytical function within the Estima-
tionTools package. Our implementation extends the approach established by (Marinho et al.,
2019) in the AdequacyModel package, going beyond the mere application of the Barlow ex-
pression detailed in equation (3-8). We also integrated the application of equation (3-9), thus
providing a more comprehensive analytical tool. Furthermore, TTTE_Analytical generates
a S3 object of class EmpiricalTTT. The function can be used to define their main arguments.

TTTE_Analytical(formula, scaled, method)

where formula is a formula object of R defining the response variable to be explored and
scaled is used for obtain the scaled version. The method = "Barlow" is used for compu-
ting equation (3-8) (Barlow method), and method = "censored" to compute equation (3-9)
(Kaplan-Meier estimator).

The corresponding plot method to obtain the TTT plot is also implemented in Estimation-
Tools

plot(x, add)

where x is an EmpiricalTTT object, and add is used to add overlapping plots in the same
device. The source codes can be found in the empirical TTT transform script and the TTT
plot script from EstimationTools package repository.

Finally, we also implemented TTT_hazard_shape. This is a wrapper for TTTE_Analytical
which computes the empirical TTT and performs a LOESS (Local Estimated Scatterplot
Smoothing) non-parametric estimation to determine the convexity of the transform th-
roughout the loess() R function. The function can be executed by defining at least an
R formula object

TTT_hazard_shape(formula)

Alternatively, it can be passed an EmpircalTTT object.

https://github.com/Jaimemosg/EstimationTools/blob/master/R/TTTE_Analytical.R
https://github.com/Jaimemosg/EstimationTools/blob/master/R/plot.empiricalTTT.R
https://github.com/Jaimemosg/EstimationTools/blob/master/R/plot.empiricalTTT.R
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TTT_hazard_shape(object)

The output is an object of HazardShape class with its corresponding plot and print
methods. In EstimationTools package can also be found the following scripts:

TTT_hazard_shape.R script for the wrapper.

plot.HazardShape.R script for the graphical method.

print.HazardShape.R script for printing the description of the hazard function shape.

3.4. Application examples
In this section, we explore the usage of TTTE_Analytical and TTT_hazard_shape with two
real datasets.

3.4.1. Reduction cells data
The dataset in table 3-1 contains the failure ages (in units of 1000 days) of 20 aluminium-
reduction cells of a standard design.

0.468 0.725 0.838 0.853 0.965 1.554 1.658 1.764 1.776 1.139 1.990
1.142 2.010 1.304 1.317 2.224 2.279† 1.427 2.244† 2.286†

Table 3-1: Time to failure of 20 reduction cells (Whitmore, 1983).2

Whitmore (1983) fitted an inverse Gaussian distribution (IG) with the following PDF

f(t|µ, φ) =
√

1
(2πφt3) exp

(
−(t − µ)2

2µ2φt

)
, t > 0, (3-13)

where µ, φ > 0 are the scale and shape parameters, respectively. The dataset can be recovered
from EstimationTools package.

library(EstimationTools)
data("reduction_cells")
head(reduction_cells, n = 3)

## days status
## 1 0.468 1

2Censored datum indicated with †.

https://github.com/Jaimemosg/EstimationTools/blob/master/R/TTT_hazard_shape.R
https://github.com/Jaimemosg/EstimationTools/blob/master/R/plot.HazardShape.R
https://github.com/Jaimemosg/EstimationTools/blob/master/R/print.HazardShape.R
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## 2 0.725 1
## 3 0.838 1

The TTT transform can be computed as follows:

TTT_IG <- TTTE_Analytical(Surv(days, status) ˜ 1, data = reduction_cells,
method = ’censored’)

i_n <- TTT_IG$‘i/n‘
phi_n <- TTT_IG$phi_n
head(data.frame(i_n, phi_n), n = 3)

## i_n phi_n
## 1 0.00 0.0000000
## 2 0.05 0.3199942
## 3 0.10 0.4864690
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Figure 3-2: TTT plot for the reduction cells data.

The plot in figure 3-2 is obtained using the following command lines:

plot(TTT_IG, type = "l", las = 1, lwd = 3, col = 3)
plot(TTT_IG, type = "p", pch = 16, add = TRUE)

The comparison between figure 3-2 with patterns observed in figure 3-1b suggests an in-
creasing hazard shape. TTT_hazard_shape helps to confirm this behaviour with the print()
method.
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HS_IG <- TTT_hazard_shape(TTT_IG, data = reduction_cells)
print(HS_IG)

## --------------------------------------------------------------------
## Hazard shape: Increasing
## --------------------------------------------------------------------

## Warning in print.HazardShape(HS IG): Non-parametric estimate for Empirical
TTT is irregular.
## Please, use the ’plot()’ method to see the TTT shape

The empirical TTTs depicted in 3-1b appear as smooth functions, which can be attributed
to the large sample size used in their plotting (n = 20000). Conversely, the example at hand
uses a much smaller sample size (n = 20), which does not guarantee that the empirical TTT
transform will possess a similarly smooth shape. Consequently, the LOESS estimate derived
from this smaller sample size exhibits irregularities.
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Figure 3-3: Comparison between TTT plot and estimated hazard function for reduction
cells data. (a) TTT plot with its LOESS estimate (with default loess() R
parameters) obtained with plot() method applied on HS IG object; (b) Inverse
Gaussian hazard function with µ̂ = 1.61 and φ̂ = 5.96.

The LOESS estimation is performed by TTT_hazard_shape under the hood using stats::loess
with the default parameters (span = 0.75 and degree = 2). It can be plotted just using
the plot method for HazardShape objects. The TTT plot can be observed in figure 3-3a
alongside the actual hazard function. It is a matter of typing plot(HS_IG) in the R console.
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Whitmore (1983) also found that the maximum likelihood estimators are µ̂ = 1.61 and
φ̂ = 5.96. In fact, these estimated parameters correspond to an increasing IG hazard function
(see figure 3-3b).

3.4.2. Tensile strength data
The data presented in Table 3-2 correspond to the tensile strength T (in GPa) of 69 speci-
mens of carbon fiber tested under tension at gauge lengths of 20 mm.

1.312 1.314 1.479 1.552 1.700 1.803 1.861 1.865 1.944 1.958 1.966
1.997 2.006 2.027 2.055 2.063 2.098 2.14 2.179 2.224 2.240 2.253
2.270 2.272 2.274 2.301 2.301 2.359 2.382 2.382 2.426 2.434 2.435
2.478 2.490 2.511 2.514 2.535 2.554 2.566 2.57 2.586 2.629 2.633
2.642 2.648 2.684 2.697 2.726 2.770 2.773 2.800 2.809 2.818 2.821
2.848 2.88 2.954 3.012 3.067 3.084 3.090 3.096 3.128 3.233 3.433
3.585 3.585

Table 3-2: Tensile strength of 69 fibers (Devendra and Rangaswamy, 2013).

Ghitany et al. (2013) fitted their power Lindley (PL) distribution with the following PDF:

f(u|µ, σ) = µσ2

σ + 1(1 + uµ)uµ−1e−σuµ

, u > 0, (3-14)

where µ, σ > 0. This dataset can also be recovered from EstimationTools package.

data("Fibers")
head(Fibers, n = 3)

## Strenght
## 1 1.312
## 2 1.314
## 3 1.479

As before, we can compute the TTT transform using TTTE_Analytical

TTT_PL <- TTTE_Analytical(Strenght ˜ 1, data = Fibers)
i_n <- TTT_PL$‘i/n‘
phi_n <- TTT_PL$phi_n
head(data.frame(i_n, phi_n), n = 3)

## i_n phi_n
## 1 0.00000000 0.0000000
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## 2 0.01449275 0.5352189
## 3 0.02898551 0.5360230

and obtain the TTT plot (see figure 3-4)

plot(TTT_PL, type = ’l’, las = 1, lwd = 3, col = 3)
plot(TTT_PL, type = ’p’, pch = 16, add = TRUE)
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Figure 3-4: TTT plot for the tensile strenght data.
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Figure 3-5: Comparison between TTT and estimated hazard function plots for tensile
strength data. (a) TTT plot with its LOESS estimate; (b) Power Lindley ha-
zard function with µ̂ = 3.8678 and σ̂ = 0.0497.
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Estimates by Ghitany et al. (2013) (µ̂ = 3.8678 and σ̂ = 0.0497) corresponds to an increasing
PL hazard function.

HS_PL <- TTT_hazard_shape(TTT_PL, data = Fibers)
print(HS_PL)

## --------------------------------------------------------------------
## Hazard shape: Increasing
## --------------------------------------------------------------------

As expected, TTT_hazard_shape points an increasing hazard shape, as can be seen in figure
3-5.

3.5. Conclusion
We have implemented the empirical TTT transform and the TTT plot in separate compu-
tational routines in order to exploit its capabilities as an exploratory tool and provide po-
tential users with flexibility because they can use our plot method or choose their own
graphical representations. We also implement the Kaplan-Meier estimator in order to com-
pute the transform for censored data. Finally, we have reviewed two application examples in
which we have observed the usage and demonstrated the performance of our implementation.



4. Floating-point issues and
High-precision arithmetic

”
People think of these eureka moments and my feeling is
that they tend to be little things, a little realisation and
then a little realisation built on that.

— Roger Penrose

(Mathematician, physicist and Nobel Prize)

All real numbers in the R environment are stored as numeric objects with double precision
format (R Core Team, 2022). This means R works with 64-bits floating-point arithmetic,
which has been producing results of sufficient accuracy in a great variety of science applica-
tions. Despite using 64-bit arithmetic, many scientists and engineers who conduct extensive
computations have realised, to their disappointment, that numerical challenges have arisen
because of the rapidly growing scale of their computations, which raises doubts about the
precision of their results (Bailey and Borwein, 2015).

High-precision computation plays a key role in modern statistics because of the increased
complexity of statistical analyses. Numerical errors can significantly impact on the accuracy
of the results in many computational statistics implementations. High-precision arithmetic is
a crucial component for ensuring the accuracy of numerical optimisation algorithms, which
are widely used in statistical inference. One noteworthy example is the exact computation of
p-values for the Friedman rank sums test. This advancement allows a more accurate calcula-
tion of p-values, especially in the tails of the distribution, where large-sample approximations
can be inaccurate. As highlighted by Eisinga et al. (2017), it has the potential to improve
the reliability of the Friedman rank sums test.

The problem has been addressed by some authors from the R community. They have imple-
mented packages that provide APIs (Application Programming Interfaces) to set the pre-
cision of numerical objects. The bignum package (Hall, 2021) provides arbitrary precision
arithmetic for integers, rational numbers, and floating-point numbers. In the same direction,
the gmp package (Lucas et al., 2023) is also a well-known tool that performs high-precision
arithmetic operations using the GNU Multiple Precision (GMP) library as back-end and
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Rmpfr package (Mächler, 2022) is another alternative that uses the GNU MPFR C library.

4.1. The Rmpfr package
The Rmpfr package is a valuable tool for performing high-precision computations in the R
environment. It allows access to multiprecision arithmetic, also known as arbitrary precision
arithmetic. The package offers various functions for basic arithmetic, logical operations,
transcendental functions, and various mathematical functions. Unlike other alternatives,
Rmpfr is preferred because it is both precise and easy to use, and it is compatible with
other R packages. It is also effective and stable, meaning that it can be used in combination
with other tools for data analysis and visualisation In addition, the package is efficient and
fast, thanks to optimised algorithms for performing arithmetic operations on high-precision
numbers and parallel computations (Mächler, 2011). With a large community behind it and
regular updates, Rmpfr is a mature package. Moreover, there are useful packages like num-
bers that use Rmpfr and provide number-theoretic functions for factorisation prime numbers,
twin primes, primitive roots, modular logarithm and inverses, extended GCD, Farey series,
and continued fractions (Borchers, 2022).

The real potential of Rmpfr is completely unleashed if higher-precision numerical objects
and high-precision arithmetic algorithms are used to compute functions. A particularly in-
teresting case regarding the latter in applied mathematics and especially in statistics is the
concern with log(1 + x) and exp(x) − 1 functions. They are fundamental constituents of
beta, gamma (Didonato and Morris, 1992), exponential, Weibull, t, logistic, geometric, and
hypergeometric distributions, and even for the logit link function in logistic regression. It is
known that the direct calculation of the first produces severe cancellation for |x| ≪ 1. Simi-
larly, the latter is partially cancelled by -1 for |x| ≪ 1. Therefore, the alternative algorithms
log1p(x) and expm1(x) were proposed and included in the C libraries and the C standards
(IEEE and Open Group, 2004b,a). They use only a few terms of the Taylor series expansion
(Tang, 1990, 1992)

expm1(x) = exp(x) − 1 = x + x2

2! + x3

3! + . . . , for |x| < 1, (4-1)

log1p(x) = log(1 + x) = x − x2

2 + x3

3 − . . . , for |x| < 1. (4-2)

Consider the following mathematical function, which is commonly used in the terms of
various novel distributions:

gp = log(1 − exp(ap)), p ∈ {dp, hp}. (4-3)
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Here, dp and hp are subscripts that indicate the usage of double-precision (64 bits) and
high-precision (1024 bits) arithmetic, respectively. Additionally, consider the relative error
ε, which defined as follows:

ε = 1 − gdp

ghp

. (4-4)

Mächler (2012) computed the metric above using mpfr() function for the 1024-bits numbers
to demonstrate that the algorithms implemented from equations from (4-1) are not sufficient
to compute log(1 − exp(x)) and log(1 + exp(x)) (see figure 4-1).

log(1 − exp(− a))
log(− expm1(− a))
log1p(− exp(− a))
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Figure 4-1: Relative error (ε) of the default, log(1−exp(a)), and the two methods expm1()
and log1p() because of the usage of double-precision compared with the usage
of high-precision arithmetic (Mächler, 2012). εc (green dashed line) is the sma-
llest positive floating-point number in R (normally 2.220446e-16).

Khan (2018) and Muhammad et al. (2021) required to implement a combination of log1p–
expm1 functions with high-precision numbers using mpfr() function to obtain successful
maximum likelihood estimation routines. The use of standard floating-point arithmetic in
these scenarios can result in significant numerical errors, thereby undermining the accuracy
or even the convergence of statistical models.

In the next section, we show the positive impact of using high-precision arithmetic algorithms
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such expm1 or log1p alongside with high-precision numerical objects with the mpfr() fun-
ction in writing distributions in R.

4.2. Illustrative examples
In this section, we select two relevant reliability distributions whose estimation procedures
benefit from high-precision arithmetic practises

4.2.1. Odd Weibull distribution
The odd Weibull (OW) distribution, proposed by Cooray (2006), which can model a bathtub-
shaped failure rate, is a more versatile version of the standard Weibull distribution. Further
information can be found in section 8.1. The PDF is given by

fOW (x|µ, σ, ν) =
(

σν

x

)
(µx)σ exp (µx)σ (exp (µx)σ − 1)ν−1 [1 + (exp (µx)σ − 1)ν ]−2

,

x > 0, µ, σ, ν > 0.
(4-5)

Let’s implement the PDF using log(fOW (x))

log(fOW (x|µ, σ, ν)) = log
(

σν

x

)
+ σ log(µx) + (µx)σ + (ν − 1) log (exp (µx)σ − 1)

− 2 log [1 + (exp (µx)σ − 1)ν ] .

Estimating the odd Weibull distribution parameters can be challenging because of the combi-
nation of exponential and logarithmic functions in the likelihood function log(fOW (x)) when
the estimated parameters have low values. In table 4-1 are presented a couple of examples
with lifetime data that exhibit this condition.

Parameter Electronic equipment Mice mortallity

µ 0.00535 0.00761
σ 3.22388 6.22780
ν 0.28424 0.74950

Table 4-1: µ, σ and ν values for electronic equipment and mice mortality OW fitted models
(Cooray, 2006).

Regarding the relative error metric again
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εOW = 1 − fOW,dp

fOW,hp

, (4-6)

where fOW,dp and fOW,hp are the double-precision and high-precision (1024 bits) OW imple-
mentations, respectively. Let’s implement two versions of the OW distribution and let’s see
what happens with εOW at low values of µ when mpfr(), log1p() and expm1() are discarded
from the implementation given x = 1 and σ, ν fixed with values from table 4-1.

dOW_64_bits <- function(x, mu, sigma, nu, log=FALSE){
prod1 <- (mu*x)ˆsigma
loglik <- log(sigma*nu) - log(x) + sigma*( log(mu) + log(x) ) +

(mu*x)ˆsigma + ( nu - 1 )*log(exp( prod1 ) - 1) -
2*log( 1 + (exp(prod1) - 1)ˆnu )

if (log == FALSE)
dens <- exp(loglik)

else
dens <- loglik

return(dens)
}

dOW_1024_bits <- function(x, mu, sigma, nu, log=FALSE){
prod1 <- Rmpfr::mpfr((mu*x)ˆsigma, 1024)
loglik <- log(sigma*nu) - log(x) + sigma*( log(mu) + log(x) ) +

(mu*x)ˆsigma + ( nu - 1 )*log(expm1( prod1 )) -
2*log1p( (expm1(prod1))ˆnu )

if (log == FALSE)
dens <- exp(loglik)

else
dens <- loglik

return(dens)
}

Figure 4-2 illustrates the behaviour of the relative errors. For electronic equipment and mice
mortality data, the relative errors associated with the parameter µ̂, when computed using
standard double-precision floating-point numbers, are on the order of O(10−9) and O(10−3)1,
respectively, across most of the parameter space. These errors exceed the smallest represen-
table floating-point number, 2.22 × 10−16. These discrepancies underscore the necessity of
employing high-precision arithmetic when working with this distribution. It should also be
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noted that even larger errors may occur for µ > 1.
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Figure 4-2: Relative error (εOW ) of the 64-bits mean density function implementation of
the OW distribution. Both vertical lines correspond to the estimated value for
µ in each case (i.e. black line for the electronic equipment data and blue line
for the mice mortality data). εc (green dashed line) is the smallest positive
floating-point number in R (normally 2.220446e-16).

4.2.2. Exponentiated Weibull distribution
The exponentiated Weibull (EW) distribution is a flexible probability distribution that is
widely used in survival analysis and reliability engineering. This is a generalisation of the
Weibull distribution proposed by Mudholkar and Hutson (1996). The PDF is given by the
following expression:

fEW (x|ρ, κ, γ) = κργ (ρx)κ−1 exp [− (ρx)κ] {1 − exp [− (ρx)κ]}γ−1
, x > 0, ρ, κ, γ > 0.

(4-7)
1O(·) denotes the big-O notation, also known as Bachmann–Landau notation. It is used to describe the

error magnitude in the context of analytic number theory (De Bruijn, 1981).
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Logarithm of the density function

log(fEW (x|ρ, κ, γ)) = log(κ) + log(ρ) + log(γ) + (κ − 1) log(ρx) − (ρx)κ+
(γ − 1) [1 − exp (−(ρx)κ)]

(4-8)

Regarding the head and neck cancer data (Efron, 1988) from section 1.1.2, its corresponding
model equation is shown below:

Ti
iid.∼ EW (ρ, κ), (4-9)

log(ρ) = β0 + β1xi, (4-10)
log(κ) = α0, (4-11)
log(γ) = λ0, (4-12)

with ρ, κ > 0 and xi is the treatment indicator covariate. The parameter values estimated
for the EW model by Khan (2018) are reported in table 4-2

Parameter Estimate

β0 10.183
β1 0.561

log(κ) -2.116
log(γ) 6.708

Table 4-2: β0 and β1 (which explain ρ), κ and γ values for head and neck EW fitted models
(Efron, 1988).

Similarly as was done in section 4.2.1, we implemented two versions of the EW distribution.
We examined the outcomes of using the double precision implementation far from β1 true
value given x = 1 and κ, γ, β0 fixed (with values from table 4-2). For further details regarding
the code implementation, please refer to section EW implementations.

In the depicted Figure 4-3, the behaviour of the relative error is presented. When performing
parameter estimation for head and neck cancer data, the relative error using traditional
double precision computations near the actual parameter value is roughly O (10−14). This
value is larger than the smallest floating-point value of 2.22 × 10−16, indicating that the
traditional double-precision computations may not be sufficient for accurate estimation of
the ρ parameter in this distribution.



4.2 Illustrative examples 41

R
el

at
iv

e 
er

ro
r (ε

E
W

)

β1

0.0 0.2 0.4 0.6 0.8 1.0

10−16

10−15

10−14

εc

Figure 4-3: Relative error (εEW ) of the 64-bits mean density function implementation of
the EW distribution. The vertical lines correspond to the estimated value for
β1. εc (green dashed line) is the smallest positive floating-point number in R
(normally 2.220446e-16).

EW implementations

This sections shows the standard double-precision (64 bits) implementation and the hig-
precision version (1024 bits) of the EW distribution.

dEW_64_bits <- function(x, rho, kappa, gamma, log=FALSE){
prod1 <- rho*x
prod2 <- prod1ˆkappa
loglik <- log(rho) + log(kappa) + log(gamma) + (kappa - 1)*log(prod1) -

prod2 + (gamma - 1)*log(1 - exp(-prod2))
if (log == FALSE)

dens <- exp(loglik)
else

dens <- loglik
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return(dens)
}

dEW_1024_bits <- function(x, rho, kappa, gamma, log=FALSE){
prod1 <- mpfr(rho*x, 1024)
prod2 <- mpfr(-(rho*x)ˆkappa, 1024)
loglik <- log(rho) + log(kappa) + log(gamma) + (kappa - 1)*log(prod1) +

prod2 + (gamma - 1)*log( -expm1(prod2) ) # log1mexp(prod2)
if (log == FALSE)

dens <- exp(loglik)
else

dens <- loglik
return(dens)

}

4.3. Conclusion
High-precision arithmetic played a crucial role in the specific examples presented in this
chapter and in the development of this thesis, effectively controlling computation errors that
stem from small true parameter values for a couple of flexible lifetime distributions. However,
it is common to find other flexible lifetime distributions that also depend on combinations of
exponential and logarithmic functions. Therefore, analogous analyses to those presented in
this chapter could elucidate the behaviour of the distributions and enable the identification
of regions in the parameter space that require greater attention to ensure reliable results.



Part II

Estimation



5. Parameter estimation

”
The journey of a thousand miles begins with one step.

— Lao Tzu

(Philosopher and poet)

Parameter estimation is a central problem in statistics. This problem has traditionally been
tackled as a likelihood maximisation problem, as introduced by Fisher (1912). As explained
previously (chapters 2 and 3), the maximum likelihood (ML) estimation method involves per-
forming an optimisation through the first derivative of the log-likelihood function and solving
the outgoing system of equations. This method is preferred because it produces consistent
and efficient estimators (Daniels, 1961). The method of moments is an alternative introdu-
ced by Diaconis (1987); Sheynin (1994) and exploited by Pearson (1936), which consists of
equating the population moments to the sample moments, obtaining a system of equations
whose variables are the parameters of interest. While the previously mentioned methods
focus solely on the observed data, the Bayesian framework incorporates prior information
into the estimation process, leading to a more comprehensive and nuanced understanding of
the parameters (Gelman et al., 2017).

R possess an extensive number of packages (add-ons) to enhance its capabilities, e.g MASS
package with its function fitdistr, which is a general purpose maximum-likelihood estima-
tion routine that implements optim in order to fit any of the univariate distributions of table
5-1 with or without constraints (Venables and Ripley, 2013). fitdistrplus is a package that
extends fitdistr because it provides functions for fitting distributions with quantile mat-
ching estimation, moment matching estimation, maximum goodness-of-fit ,and maximum
likelihood estimation with censored and non-censored data; In addition, fitdistrplus allows
the implementation of a user-supplied optimisation algorithm (Delignette-Muller and Du-
tang, 2015). There are other interesting efforts: the actuar package estimates parameters with
maximum goodness-of-fit, using seven different types of distances (Goulet, 2008); distrMod
consist on implementation of probability models in S4 object system, with methods for fitting
distributions based on user-supplied optimization functions (Kohl and Ruckdeschel, 2010);
modest (Poncet, 2019), lmomco (Asquith, 2018) and Lmoments (Karvanen, 2006, 2019)
supply tools for estimating the mode, moments and L-moments, respectively. Furthermore,
Henningsen and Toomet (2011) developed maxLik package in order to provide an environ-
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ment for exclusively performing maximum likelihood estimation. They implemented some
other optimisation methods, such as BHHH (Berndt-Hall-Hall-Hausman). The package has
a wrapper maxOptim, which calls optim in order to implement SANN (simulated annealing),
BFGS and Nelder-Mead algorithms.

Distribution R name

beta beta
binomial binom
Cauchy cauchy
Chi-squared chisq
exponential exp
F f
gamma gamma
geometric geom
hypergeometric hyper
log-normal lnorm
logistic logis
negative-binomial nbinom
normal norm
Poisson pois
T t
uniform unif
Weibull weibull
Wilcoxon wilcox

Table 5-1: Probability distributions and its function name in fitdistr.

In the Bayesian framework, several packages are available that provide tools for fitting mo-
dels. The package BayesTools offers an extensive array of tools for Bayesian statistical mo-
delling and inference, particularly for JAGS and Stan models, as detailed by Bartoš (2021).
bayesm is specifically tailored for efficient Bayesian estimation and model selection, as Rossi
(2023) discusses. LaplacesDemon features a user-friendly interface for Bayesian inference and
model comparison (Statisticat and LLC., 2021). For Markov chain Monte Carlo (MCMC)
sampling, a crucial technique in Bayesian inference for complex models, MCMpack provides
robust tools (Martin et al., 2011). Lastly, nimble is recognised for its flexibility and effi-
ciency in Bayesian modelling and inference, especially in hierarchical models, as presented
by de Valpine et al. (2017).

In this chapter, we introduce the maxlogL function available in the EstimationTools pac-
kage (Mosquera Gutiérez and Hernández, 2023) from the CRAN (https://cran.rstudio.
com/web/packages/EstimationTools/index.html). maxlogL is a computational procedu-

https://cran.rstudio.com/web/packages/EstimationTools/index.html
https://cran.rstudio.com/web/packages/EstimationTools/index.html
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re that performs log-likelihood maximisation stated on equation (2-2) based on different
box-constrained algorithms included previously in optim or nlminb only with the densit-
y/mass function implemented as usual in R. We will show that the user can define its own
distribution or use any existing distribution in any package. The remainder of this chap-
ter defines the maximization problem computationally. We then present a simulation study
to evaluate the performance of maxlogL with data generated from normal, ZIP, and user-
defined distributions. Finally, we present an application with a real dataset and present some
conclusions.

5.1. Estimation
Let be y⊤ = (y1, y2, ..., yn) a random sample with n observations drawn from a population
with distribution f(·|θ), with θ a vector of parameters. The likelihood function of θ is

L(θ|y) =
n∏

i=1
f(yi|θ). (5-1)

The ML estimation method finds the parameter values that make the data more probable.
This is achieved by computing a vector θ̂ such that

θ̂ = arg máx
θ∈Θ

L(θ|y). (5-2)

It is usual to perform maximisation of the log-likelihood function, i.e. l(θ|y) = log L(θ|y).
The variance-covariance matrix of the ML estimators is given by

V ar(θ̂) = J −1(θ̂) = C(θ̂), (5-3)

where J (θ̂) is the observed Fisher information matrix

J (θ̂) = ∂2

∂θ2 log(f(yi|θ)). (5-4)

The standard errors can be calculated as the square root of the diagonal elements of matrix
C (Pawitan, 2013b)

S.E(θ̂) =
√

Cjj(θ̂). (5-5)

The R function presented here calculates l(θ|y) computationally, and computes standard
errors from the Hessian matrix.
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5.2. Basic usage and features
EstimationTools package can be downloaded and used typing the following instructions in
the console:

install.packages("EstimationTools")
library(EstimationTools)

or these others command lines

if (!require(’devtools’)) install.packages(’devtools’)
devtools::install_github(’Jaimemosg/EstimationTools’, force = TRUE)
library(EstimationTools)

EstimationTools loads several functions in the global environment, maxlogL function is one
of them. It is a wrapper function developed for flexible maximum likelihood estimation
and produces an S3 object of class maxlogL with the estimates and some details about
the estimation process as its attributes. It can be executed by stating its most important
arguments

maxlogL(x, dist, optimizer, lower = NULL, upper = NULL)

where the argument x is a vector with data to be fitted, dist corresponds to the probabi-
lity density/mass function of the working distribution, whereas upper and lower are limits
used when the user selects box-constrained algorithms. Through the argument optimizer,
maxlogL allows to use any of optim algorithms for optimisation, nlminb routine for unconstrained/box-
constrained optimisation or DEoptim for computation with differential evolutionary algo-
rithm. For further information, please visit the stable repository https://cran.r-project.
org/web/packages/DEoptim/index.html or the last development version https://github.
com/ArdiaD/DEoptim.

Hence, the user must pass a vector with the data and specify a probability distribution
function available in R. For example, let’s fit a sample generated from a normal distribution,

Z ∼ NO(µ = 10, σ2 = 1)
.

This could be done using the next command lines

set.seed(1000)
z1 <- rnorm(n = 1000, mean = 10, sd = 1)

fit1 <- maxlogL(
x = z1,

https://cran.r-project.org/web/packages/DEoptim/index.html
https://cran.r-project.org/web/packages/DEoptim/index.html
https://github.com/ArdiaD/DEoptim
https://github.com/ArdiaD/DEoptim
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dist = "dnorm",
start = c(2, 3),
lower = c(-15, 0),
upper = c(15, 10)

)

EstimationTools package also provides a summary method for class maxlogL, which displays
AIC (Akaike Information Criterion), BIC (Bayesian Information Criterion), ML estimates,
their standard errors, the optimisation routine selected by the user, and the method used
for the computation of the standard error.

summary(fit1)

## _______________________________________________________________
## Optimization routine: nlminb
## Standard Error calculation: Hessian from optim
## _______________________________________________________________
## AIC BIC
## 2804.033 2813.849
## _______________________________________________________________
## Estimate Std. Error Z value Pr(>|z|)
## mean 9.98752 0.03103 321.87 <2e-16 ***
## sd 0.98126 0.02194 44.72 <2e-16 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
## _______________________________________________________________
## Note: p-values valid under asymptotic normality of estimators
## ---

The estimated parameters µ̂ = 9.988 and σ̂ = 0.981 are close to the true values, as expected.
The standard errors were computed with the inverse Hessian (recall equations ?? and 5-5).
The maxlogL function has two options

If StdE_Method = optim, the Hessian matrix is computed with optim (with option
‘hessian = TRUE‘ under the hood). This is the default option.

If the previous implementation fails or if the user chooses StdE_Method = numDeriv,
it is calculated using hessian function from numDeriv package. Let's fit using using
this option below.

fit2 <- maxlogL(
x = z1,
dist = "dnorm",
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start = c(2, 3),
lower = c(-15, 0),
upper = c(15, 10),
StdE_method = "numDeriv"

)
summary(fit2)

## _______________________________________________________________
## Optimization routine: nlminb
## Standard Error calculation: numDeriv::hessian
## _______________________________________________________________
## AIC BIC
## 2804.033 2813.849
## _______________________________________________________________
## Estimate Std. Error Z value Pr(>|z|)
## mean 9.98752 0.03103 321.87 <2e-16 ***
## sd 0.98126 0.02194 44.72 <2e-16 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
## _______________________________________________________________
## Note: p-values valid under asymptotic normality of estimators
## ---

Optionally, the EstimationTools provides the bootstrap_maxlogL method for maxlogL ob-
jects, which uses the boot function from the boot package (Davison and Hinkley, 1997; Canty
and Ripley, 2017). This method replaces the fitted regression parameters and standard errors,
initially calculated using the Hessian matrix, with those computed using bootstrap.
fit1_bootstrap <- fit1
bootstrap_maxlogL(fit1_bootstrap, R = 200)

##
## ...Bootstrap computation of Standard Error. Please, wait a few minutes...

##
## -->Done <---

summary(fit1_bootstrap)

## _______________________________________________________________
## Optimization routine: nlminb
## Standard Error calculation: Bootstrap
## _______________________________________________________________
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## AIC BIC
## 2804.033 2813.849
## _______________________________________________________________
## Estimate Std. Error Z value Pr(>|z|)
## mean 9.98752 0.02832 352.63 <2e-16 ***
## sd 0.98126 0.02034 48.23 <2e-16 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
## _______________________________________________________________
## Note: p-values valid under asymptotic normality of estimators
## ---

p-values for the estimated parameters were calculated using the Wald test (Wald, 1943). The
link argument of maxlogL is a list with entries fun and over, which specify the link functions
applied and the name of the linked parameters in the probability function implemented in R
respectively. The estimation performed above can be performed by applying a logarithmic
link function to σ, avoiding problems of estimation in the boundary of parametric space.
The usage is illustrated in the following code snippet:

fit3 <- maxlogL(
x = z1, dist = "dnorm", link = list(over = "sd", fun = "log_link")

)
summary(fit3)

## _______________________________________________________________
## Optimization routine: nlminb
## Standard Error calculation: Hessian from optim
## _______________________________________________________________
## AIC BIC
## 2804.033 2813.849
## _______________________________________________________________
## Estimate Std. Error Z value Pr(>|z|)
## mean 9.98752 0.03103 321.87 <2e-16 ***
## sd 0.98126 0.02194 44.72 <2e-16 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
## _______________________________________________________________
## Note: p-values valid under asymptotic normality of estimators
## ---

The user can apply link functions to more than one parameter of the distribution
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fit4 <- maxlogL(
x = z1,
dist = "dnorm",
link = list(

over = c("mean", "sd"),
fun = c("log_link", "log_link")

)
)
summary(fit4)

## _______________________________________________________________
## Optimization routine: nlminb
## Standard Error calculation: Hessian from optim
## _______________________________________________________________
## AIC BIC
## 2804.033 2813.849
## _______________________________________________________________
## Estimate Std. Error Z value Pr(>|z|)
## mean 9.98752 0.03103 321.87 <2e-16 ***
## sd 0.98126 0.02194 44.72 <2e-16 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
## _______________________________________________________________
## Note: p-values valid under asymptotic normality of estimators
## ---

Other link functions available are logit and negative inverse, which must be specified as
"logit_link" and "NegInv_link". On the other hand, maxlogL allows to define fixed known
parameters, e.g., the sample size n in the estimation of success proportion in a binomial
distribution such the following:

N ∼ BI(p = 0.3, n = 10).

These parameters can be specified with fixed argument, which is a list that stores the fixed
parameter values specified by their names

set.seed(100)
N <- rbinom(n = 100, size = 10, prob = 0.3)
phat <- maxlogL(

x = N,
dist = "dbinom",
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fixed = list(size = 10),
link = list(over = "prob", fun = "logit_link")

)
summary(phat)

## _______________________________________________________________
## Optimization routine: nlminb
## Standard Error calculation: Hessian from optim
## _______________________________________________________________
## AIC BIC
## 334.9805 334.9805
## _______________________________________________________________
## Estimate Std. Error Z value Pr(>|z|)
## prob 0.31200 0.01465 21.3 <2e-16 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
## _______________________________________________________________
## Note: p-values valid under asymptotic normality of estimators
## ---

As can be seen, the procedure applies the inverse of the link function to return the parameter
to the original scale.

5.3. Simulation Study
We simulate the following two types of random variables:

Z1 ∼ NO(µ = 852.4, σ2 = 78.61) based on MLE estimates by Pawitan (2013a) of 100
measurements of the speed of light, extracted from Stigler (1977).

Z2 ∼ ZIP(λ = 0.36, π = 0.44) based on MLE estimates of traffic accident data by
Wagh and Kamalja (2018).

The estimation was performed with maxlogLwith 10000 replications for each sample size
using the four available optimisers: nlminb, optim with BFGS algorithm, DEoptim with its
Differential Evolution algorithm and ga, an implementation of genetic algorithms. The last
two have been applied using the default values for the arguments. The results of the Monte
Carlo study for the two above-mentioned distributions are presented in Figure 5-1 and 5-3.

Figure 5-1 illustrates the convergence of nlminb, DEoptim, and ga toward specific parameter
values as the sample size increases in the context of the normal distribution. The ga algorithm
exhibits higher variability in its parameter estimates for smaller sample sizes, requiring more
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Figure 5-1: Mean value for (a) location parameter µ̂ and (b) scale parameter σ̂ versus
sample size n in normal distribution based on 4000 replications. Horizontal red
lines represent the true values of the parameters.
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Figure 5-2: Variance for (a) location parameter µ̂ and (b) scale parameter σ̂ versus sample
size n in normal distribution based on 10000 replications.

time to stabilize. Conversely, DEoptim consistently provides stable and reliable estimates
across various sample sizes. However, it is important to note that the optim algorithm yields
biased estimates in this particular case.

Figure 5-3 demonstrates that as the sample size increases, the mean estimates converge
toward the true ZIP parameter values as expected under regularity conditions, with the
exception of the ga algorithm, which consistently produces biased estimates. Furthermore,
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Figure 5-3: Mean value for (a) rate parameter λ̂ and (b) extra zeros proportion π̂ versus
sample size n in the ZIP distribution based on 10000 replications. Horizontal
red lines represent the true values of the parameters.
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Figure 5-4: Variance for (a) rate parameter λ̂ and (b) extra zero proportion π̂ versus sample
size n in the ZIP distribution based on 10000 replications.

the variance of the estimated parameters decreases as the sample size increases, in accordance
with the efficiency property of maximum likelihood estimators (Gurland, 1954; Daniels,
1961). These findings are visually represented in Figures 5-2 and 5-4 for the normal and
ZIP distributions, respectively.
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5.4. Illustrative examples
In the following examples, we replicate the maximum likelihood method with maxlogL in two
applications: fitting the power Lindley distribution to model the tensile strength of carbon
fibers and parameter estimation in a two-stage hierarchical model of retention proportions
in memory tests.

5.4.1. Tensile strength data: power Lindley distribution
In section 3.4.2 we presented this dataset, which comprises the tensile strength of 69 speci-
mens of carbon fiber modelled with a power Lindley (PL) distribution. We implemented the
density and cumulative density functions in the R dPL and pPL functions displayed below

dPL <- function(x, mu, sigma, log=FALSE){
if (any(x < 0))

stop(paste("x must be positive", "\n", ""))
if (any(mu <= 0))

stop(paste("mu must be positive", "\n", ""))
if (any(sigma <= 0))

stop(paste("sigma must be positive", "\n", ""))

loglik <- log(mu) + 2*log(sigma) - log(sigma+1) +
log(1+(xˆmu)) + (mu-1)*log(x) - sigma*(xˆmu)

if (log == FALSE)
density <- exp(loglik)

else density <- loglik
return(density)

}

pPL <- function(q, mu, sigma,
lower.tail=TRUE, log.p=FALSE){

if (any(q < 0))
stop(paste("q must be positive", "\n", ""))

if (any(mu <= 0))
stop(paste("mu must be positive", "\n", ""))

if (any(sigma <= 0))
stop(paste("sigma must be positive", "\n", ""))

cdf <- 1 - (1+((sigma/(sigma+1))*qˆmu))*exp(-sigma*(qˆmu))
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if (lower.tail == TRUE)
cdf <- cdf

else cdf <- 1 - cdf
if (log.p == FALSE)

cdf <- cdf
else cdf <- log(cdf)
cdf

}

Then, we estimate the parameters with maxlogL taking the vector of the strengths from data
set fibers, as follows:
# Fitting of tensile strenght data
st <- Fibers$Strenght
theta <- maxlogL(x = st, dist = "dPL",

link = list(over = c("mu", "sigma"),
fun = c("log_link", "log_link")))

summary(theta)

## _______________________________________________________________
## Optimization routine: nlminb
## Standard Error calculation: Hessian from optim
## _______________________________________________________________
## AIC BIC
## 102.119 106.5872
## _______________________________________________________________
## Estimate Std. Error Z value Pr(>|z|)
## mu 3.86778 0.31371 12.329 < 2e-16 ***
## sigma 0.04967 0.01599 3.107 0.00189 **
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
## _______________________________________________________________
## Note: p-values valid under asymptotic normality of estimators
## ---

Estimations are µ̂ = 3.8678 and σ̂ = 0.0497. Essentially, we obtain the same values computed
by Ghitany et al. (2013). In Figure 5-5 we showed the performance of parameter estima-
tion plotting the corresponding density along with the histogram in the left panel and the
estimated survival function along with Kaplan-Meier estimator in the right panel.
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Figure 5-5: Fitting of tensile strength data: (a) estimated density and histogram; (b) esti-
mated power Lindley survival function and Kaplan-Meier (KM) estimator.

5.4.2. Forgetting data: hierarchical binomial distribution
The maxlogL function is capable of fitting hierarchical models with the proper function
definition of the input variable. To illustrate the estimation, we replicated the forgetting data
example presented in Myung (2003), which used data from Murdock, Bennet B. (1961).

The retention function is a probability function that models the proportion of correct recall
at time ti in each trial in memory tests. Myung (2003) studied the following two models in
their application example:

power model: p(a, b, t) = at−b,

exponential model: p(a, b, t) = a exp (−bt), a, b > 0, t > 0.
(5-6)

m = 100 (number of trials)
Retention Interval (sec.) 1 3 6 9 12 18
Observed proportion 0.94 0.77 0.40 0.26 0.24 0.16

Table 5-2: Observed proportion of recalls at each time.

Each observation in the dataset corresponds to a proportion obtained as the quotient of
correct responses (wi) and the total number of independent trials (replications of each me-
mory test, represented by m). This type of experiment can be modelled with a binomial
distribution
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f(wi|a, b, m) = m!
(m − wi)! wi!

p(a, b, ti) [1 − p(a, b, ti)]m−wi (5-7)

The usefulness of each retention equation is given by its goodness-of-fit.

Power model implementation

The hierarchical model with the power retention function is implemented in an R function
as follows:
# Power model implementation
power_logL <- function(x, a, b, log = FALSE){

p <- a * x[,1]ˆ(-b)
f <- dbinom(x = x[,2], size = m, prob = p)
if (log == TRUE)

density <- log(f) else density <- f
return(density)

}

The conditional density in equation (5-7) depends on wi, but the proportion of successes
depends on t, as equation (5-6) shows. Therefore, the input argument x must be a n × 2
matrix, where n is the sample size. In forgetting data, n = 6. Then, the estimation is
performed as usual with maxlogL. Note lines six in the following chunk of code, which
corresponds to the matrix definition of the input data aforementioned
# Power model estimation
m <- 100 # Independent trials
t <- c(1,3,6,9,12,18) # time intervals
p.ob <- c(0.94,0.77,0.40,0.26,0.24,0.16) # Observed proportion
w <- p.ob*m # Correct responses
w <- as.integer(w)
Wi <- matrix(c(t, w), ncol=2, nrow=6)

retention.pwr <- maxlogL(x = Wi, dist = "power_logL", lower = c(0.01,0.01),
upper = c(1,1), start = c(0.1,0.1))

summary(retention.pwr)

## _______________________________________________________________
## Optimization routine: nlminb
## Standard Error calculation: Hessian from optim
## _______________________________________________________________
## AIC BIC



5.4 Illustrative examples 59

## 57.4522 58.422
## _______________________________________________________________
## Estimate Std. Error Z value Pr(>|z|)
## a 0.95312 0.01860 51.25 <2e-16 ***
## b 0.49793 0.03236 15.38 <2e-16 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
## _______________________________________________________________
## Note: p-values valid under asymptotic normality of estimators
## ---

In this application, convergence was achieved by solving a box-constrained likelihood op-
timisation whose boundaries were specified in arguments lower and upper. Furthermore,
tuning the initial values was necessary with argument start. The computed values are
θ̂ = (âpwr, b̂pwr) = (0.953, 0.498), which are the same estimates of Myung (2003). Power
fitting is illustrated in Figure 5-6.

Exponential model implementation

Similarly as before, the exponential retention function is implemented and the input data is
defined as a matrix.
# Exponential model implementation
exp_logL <- function(x, a, b, log = FALSE){

p <- a * exp(-x[,1]*b)
f <- dbinom(x = x[,2], size = m, prob = p)
if (log == TRUE)

density <- log(f) else density <- f
return(density)

}

# Exponential model estimation
m <- 100 # Independent trials
t <- c(1,3,6,9,12,18) # time intervals
p.ob <- c(0.94,0.77,0.40,0.26,0.24,0.16) # Observed proportion
w <- p.ob*m # Correct responses
w <- as.integer(w)
Wi <- matrix(c(t, w), ncol=2, nrow=6)

retention.exp <- maxlogL(x = Wi, dist = ’exp_logL’, lower = c(0.1,0.1),
upper = c(2,2), start = c(0.1,0.2))
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summary(retention.exp)

## _______________________________________________________________
## Optimization routine: nlminb
## Standard Error calculation: Hessian from optim
## _______________________________________________________________
## AIC BIC
## 41.3329 42.3027
## _______________________________________________________________
## Estimate Std. Error Z value Pr(>|z|)
## a 1.070112 0.031342 34.14 <2e-16 ***
## b 0.130826 0.009252 14.14 <2e-16 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
## _______________________________________________________________
## Note: p-values valid under asymptotic normality of estimators
## ---
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Figure 5-6: Observed proportion of recalls and models fitted.

Again, we obtain the same estimates of Myung (2003): θ̂ = (âexp, b̂exp) = (1.070, 0.131).
Exponential fitting is shown in Figure 5-6. According to the Akaike information criterion,
the exponential model has better fitness (AICexp = 41.33 against AICpwr = 57.45).
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5.5. Conclusions
We implemented classic estimation via maximisation of the log-likelihood function through
basic optimisation routines in R such as optim and nlminb. With maxlogL, we enable re-
searchers, developers, and users to compute MLEs of any distribution in a fast and reliable
way. The algorithm computes the standard error of estimates through a Hessian matrix, and
with our summary method, it is possible to print it. Alternatively, a bootstrap algorithm can
be used. In some cases, it is possible to implement estimation in hierarchical models with
appropriate tuning of initial values.

Furthermore, we explored the implementation of evolutionary algorithms and and genetic
algorithms, which are useful for performing estimation in distributions with regularity issues
(Haupt and Haupt, 2003; Dorsey and Mayer, 1995). Further investigation investigation is
necessary to address biases observed in simulation studies when using the ga algorithm.

In the next chapter, we will leverage our routine to delve deeper into log-likelihood estimation,
with a focus on developing new parametric regression models.



6. Regression model

”
All models are approximations. Essentially, all models
are wrong, but some are useful. However, the approxi-
mate nature of the model must always be borne in mind.

— George E. P. Box

(Industrial Chemist and Statistician (by accident))

Lifetime distributions themselves are an improvement with respect to classical distributions
because they allow us to model data described by a bathtub-shaped hazard function with a
good fitting. However, estimation without covariates is not always suitable for analysing the
results from clinical trials in survival analysis or accelerated life test for reliability. In such
situations, the inclusion of explanatory variables is necessary.

From the classic statistics approach, modelling proposals have been made based on regres-
sion analysis. For example, Cox (1972) proposed the proportional hazards semiparametric
model, with the fundamental assumption that the covariates have a multiplicative effect on
the hazard function, Therneau and Grambsch (2000a) and implemented this model in the
coxph function, from survival package. Despite the underlying assumption, this is a flexible
methodology because it does not depend on distribution specification. However, for pre-
dicting outcomes for specific sample units or computing the mean survival, the parametric
approach is more convenient (Jackson, 2016) (actually, Cox preferred the parametric ap-
proach [Reid, 1994]). An alternative for fulfilling this idea lies in the Event History Analysis
by (Broström, 2018). This approach is pertinent for regression problems in survival analysis
because it proposes using parametric proportional hazard models for common distribution
families (Weibull, Gompertz, lognormal and Piecewise constant hazard functions) through
aftreg function from the eha package (Broström, 2020).

Another important class of models, the Accelerated Failure Time (AFT) models, arise from
the assumption that the experimental units associated with the baseline treatment are dif-
ferent from those associated with the other treatments in terms of survival by a factor or
acceleration rate (Kalbfleisch and Prentice, 2002). They can be fitted with the survreg fun-
ction, also from the survival package. This implementation provides distributions such as
Weibull, exponential, Gaussian, logistic, lognormal, and loglogistic, but also enables the
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users to include distributions with location and scale parameters using guidelines from
survreg.distributions framework, i.e, it supports only two-parameter distributions.

Other interesting approaches have been developed to overcome the restriction in distribution
complexity, e.g, flexsurreg from flexsurv package. The last allows the fitting of time-to-
event with MLE not only with common distributions but also with the Royston-Parmar
spline model, generalised gamma, and generalised F distributions (Jackson, 2016). A more
recent approach to model data from experiments in survival analysis consists of adjusting
the parameters of a distribution selected in terms of explanatory variables. A development in
this direction is related to GAMLSS (Generalized Additive Models for Location, Shape and
Scale) by Rigby and Stasinopoulos (2005). Within this framework, it is possible to imple-
ment any distribution that has four parameters or less and estimate its parameters in terms
of covariates from a log-likelihood function. This proposal includes the creation of gamlss
package (Stasinopoulos and Rigby, 2007). It is possible to perform parameter estimation
of any distribution implemented as a gamlss.family structure. Visit Stasinopoulos et al.
(2017b) for more details.

All of these frameworks are relevant and enrich the possibilities of survival analysis. Those
packages that offer flexible modelling require the programming of new distributions from the
creation of complex functions, including data structures and combinations of various types
of objects, which makes the usability feasible for medium or advanced R users. In this chap-
ter, we specify the mathematical form of the regression models covered in this project and
present a wrapper computational procedure, maxlogLreg, from package EstimationTools. It
performs the log-likelihood maximum estimation of linear models only with a straightfor-
ward implementation of the density function, as is customary in R based on the capabilities
of the aforementioned maxlogL.

6.1. Model Statement
Let be y⊤ = (y1, y2, ..., yn) a random sample with n observations distributed as D. This
distribution has k parameters, i.e, it has a probability (density) function f(yi|θi1, θi2, . . . , θik),
where θij is the value of the jth parameter for the ith observation. A regression model with
relaxation of the distributional assumption can be expressed as follows:

yi ∼ D(θi1, θi2, . . . , θij, . . . , θik) (6-1)
g(θj) = ηj = X⊤

j βj. (6-2)

gk(·) is the k-th link function, ηj is the value of the linear predictor for the jth for all
observations, βj = (β0j, β1j, . . . , β(pj−1)j)⊤ are the fixed effects vector, where pj is the number

https://rdrr.io/cran/survival/man/survreg.distributions.html
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of parameters in linear predictor j, Xj is a known design matrix of order n × pj and yi is the
target variable.

6.2. Estimation
Let be β = (β01, . . . , β(p1−1)1, β02, . . . , β(p2−1)2, . . . , β0k, . . . , β(pk−1)k)⊤ a vector that contains
all the regression parameters and y a vector with all the observations yi. To find the maximum
likelihood (ML) estimators of β, we apply the MLE method

β̂ = arg máx
β∈B

l(β|y), (6-3)

where l(β|y) is the log-likelihood function of the regression parameters. The values ηij and
θij can be computed if β is known. The function is computed as follows (Turkson et al.,
2021)

l(β|y) = log
(

n∏
i=1

[f(yi|β)]Ri1 [S(yi|β)]Ri2 [F (yi|β)]Ri3

)
, (6-4)

where f(yi|θi1, θi2, . . . , θik) = f(y|β) is the probability density function of D in terms of the
regression parameters. Similarly, S(y|β) and F (y|β) are the survival and the cumulative
density functions, and Ril is an element of the status matrix R defined as follows:

Ril =
1, if sample unit i has status l,

0, in other case,
(6-5)

with i = 1, 2, . . . , n and l = 1, 2, 3 (l = 1: observation status, l = 2: right censorship status,
l = 3: left censorship status).

6.3. Standard Error
The variance-covariance matrix of the ML estimators is given by the inverse observed Fisher’s
Information Matrix Pawitan (2013b), as follows:

Var (β̂) =
[
J (β̂)

]−1
= C(β̂), (6-6)

where J (β̂) is the observed Fisher information matrix. The standard errors can be calculated
as the square root of the diagonal elements of matrix C (Pawitan, 2013b)
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S.E(β̂) =
√

Cjj(β̂). (6-7)

Recall the information matrix definition,

J (β) = [C(β)]−1 = −∂2l(β|y)
∂β2 = H(β), (6-8)

where H(·) is the Hessian matrix. Accordingly, the standard errors can be estimated by
computing equation (6-7) with the Hessian matrix, thereby

S.E(β̂) =
√

H−1
jj (β̂). (6-9)

Alternatively, standard errors can be calculated using Bootstrap.

6.4. Basic usage and features
maxlogLreg is a function implemented in EstimationTools for fitting the flexible regres-
sion models stated in section 6.1. The execution can be performed by defining at least two
arguments

maxlogLreg(formulas, y_dist)

where y_dist is an R formula defining the distribution of the response variable (D(θ)) and
formulas is a list of formulas defining the linear predictors for each parameter of the defined
distribution, i.e, equations (6-2). We provided also a summary method since the output is an
S3 object of class maxlogL (recall section 5.2).

Let’s explore the capabilities of maxlogLreg taking the lung dataset. This study contains
survival times in patients with advanced lung cancer from the North Central Cancer Treat-
ment Group Loprinzi et al. (1994).

The fitted model is as follows:

Ti ∼ WEI(αi, k), (6-10)
log(αi) = β01 + β11 × ph.ecogi + β12 × sexi + β13 × agei, (6-11)
log(k) = β02, (6-12)

The model uses the dweibull function parametrization, i.e



66 6 Regression model

f(t|α, k) = α

k

(
t

k

)α−1
exp

[
−
(

t

k

)α]
, t > 0. (6-13)

α, k > 0 are the shape and scale parameters„ respectively. The R code to fit the model is
displayed below.

library(EstimationTools)

# Formulas with linear predictors
formulas <- list(scale.fo = ˜ ph.ecog + sex + age, shape.fo = ˜ 1)

lung_data <- na.omit(
lung[, c("time", "status", "ph.ecog", "sex", "age")]

)
lung_data$sex <- as.factor(lung_data$sex)

# The model
fit_wei1 <- maxlogLreg(

formulas,
data = lung_data,
y_dist = Surv(time, status) ˜ dweibull,
link = list(

over = c("shape", "scale"), fun = rep("log_link", 2)
)

)

EstimationTools provides a summary method for objects of maxlogL class. It displays AIC
(Akaike Information Criterion), BIC (Bayesian Information Criterion), estimates, their stan-
dard errors, the optimisation routine selected by the user, and the method used for the
computation of the standard error.

summary(fit_wei1)

## _______________________________________________________________
## Optimization routine: nlminb
## Standard Error calculation: Hessian from optim
## _______________________________________________________________
## AIC BIC
## 2274.878 2292.002
## _______________________________________________________________
## Fixed effects for log(shape)
## ---------------------------------------------------------------
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## Estimate Std. Error Z value Pr(>|z|)
## (Intercept) 0.313193 0.061459 5.0959 3.47e-07 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
## _______________________________________________________________
## Fixed effects for log(scale)
## ---------------------------------------------------------------
## Estimate Std. Error Z value Pr(>|z|)
## (Intercept) 6.6745266 0.4272819 15.6209 < 2.2e-16 ***
## ph.ecog -0.3396383 0.0834348 -4.0707 4.687e-05 ***
## sex2 0.4010900 0.1237365 3.2415 0.001189 **
## age -0.0074754 0.0067519 -1.1072 0.268223
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
## _______________________________________________________________
## Note: p-values valid under asymptotic normality of estimators
## ---

fit_wei1 estimates are consistent with those got with survreg(). Further details can be
found in Parametric regression model for survival data: Weibull regression model as an exam-
ple (Zhang, 2016).

maxlogLreg allows the user can also to customize the bounds and initial guesses. Let’s try
again to fit a model with the failure data used above.

# Bounds for optimization. Upper bound set with default values (Inf)
start <- list(

scale = list(Intercept = 20, ph.ecog = 0, sex = 5, age = 0),
shape = list(Intercept = 1)

)
lower <- list(

scale = list(Intercept = 0, ph.ecog = -5, sex = 0, age = -5),
shape = list(Intercept = 0)

)

fit_wei2 <- maxlogLreg(
formulas,
y_dist = Surv(time, status) ˜ dweibull,
start = start,
lower = lower,
data = lung_data,

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5233524/#sec-a.v.dtitle
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5233524/#sec-a.v.dtitle
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link = list(
over = c("shape", "scale"), fun = rep("log_link", 2)

)
)
summary(fit_wei2)

## _______________________________________________________________
## Optimization routine: nlminb
## Standard Error calculation: Hessian from optim
## _______________________________________________________________
## AIC BIC
## 2274.878 2292.002
## _______________________________________________________________
## Fixed effects for log(shape)
## ---------------------------------------------------------------
## Estimate Std. Error Z value Pr(>|z|)
## (Intercept) 0.313192 0.061459 5.0959 3.471e-07 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
## _______________________________________________________________
## Fixed effects for log(scale)
## ---------------------------------------------------------------
## Estimate Std. Error Z value Pr(>|z|)
## (Intercept) 6.6745213 0.4272819 15.6209 < 2.2e-16 ***
## ph.ecog -0.3396384 0.0834349 -4.0707 4.687e-05 ***
## sex2 0.4010902 0.1237366 3.2415 0.001189 **
## age -0.0074754 0.0067519 -1.1072 0.268227
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
## _______________________________________________________________
## Note: p-values valid under asymptotic normality of estimators
## ---

As usual in R objects, we have provided some useful methods, such coef

coef(fit_wei2, parameter = ’scale’)

## (Intercept) ph.ecog sex2 age
## 6.674521289 -0.339638368 0.401090223 -0.007475383

coef(fit_wei2, parameter = ’shape’)

## (Intercept)
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## 0.3131917

and a coefMany to obtain the coefficients of all available linear predictors in the fitted model

coefMany(fit_wei2)

## $shape
## (Intercept)
## 0.3131917
##
## $scale
## (Intercept) ph.ecog sex2 age
## 6.674521289 -0.339638368 0.401090223 -0.007475383

6.5. Standard Error of predictions
We also provided a predict method, which computes predictions for values of any distribu-
tion parameter in link or original scale. For example, to predict values for shape parameter
in the link scale, we must run the following lines:

head(predict(fit_wei2, parameter = ’shape’), n = 6)

## 1 2 3 4 5 6
## 0.3131917 0.3131917 0.3131917 0.3131917 0.3131917 0.3131917

but predictions in original ('response') scale

head(predict(fit_wei2, parameter = ’shape’, type = ’response’), n = 6)

## 1 2 3 4 5 6
## 1.367784 1.367784 1.367784 1.367784 1.367784 1.367784

In both cases, the standard error of prediction can be computed.

link_shape <- predict(fit_wei2, parameter = ’shape’, se.fit = TRUE)
head(link_shape$se.fit, n = 6)

## 1 2 3 4 5 6
## 0.06145935 0.06145935 0.06145935 0.06145935 0.06145935 0.06145935

response_shape <- predict(fit_wei2, parameter = ’shape’,
type = ’response’, se.fit = TRUE)

head(response_shape$se.fit, n = 6)

## 1 2 3 4 5 6



70 6 Regression model

## 0.2413286 0.2413286 0.2413286 0.2413286 0.2413286 0.2413286

Actually, predict method computes the standard error using asymptotic approximation for
the 'link' scale

Var (η̂j) = XjVar (β̂j)X⊤
j , (6-14)

whereas the values for the 'response' scale uses the Delta method. The approximation
yields the following expression:

Var (θ̂j) = DjVar (η̂j)Dj, (6-15)

where Dj is a diagonal matrix with elements ∂θij/∂ηij.

6.6. Ilustrative examples
Two datasets will be considered to illustrate how to fit time-to-event data using the maxlogLreg
framework. Regression analysis was conducted using Weibull and/or exponentiated Weibull
distributions.

6.6.1. Head and neck cancer
Let’s revisit the head and neck cancer data from section 1.1.2. The dataset is stored in the
EstimationTools package

library(EstimationTools)
data("head_neck_cancer")
head(head_neck_cancer, n = 3)

## Time Therapy Status
## 1 7 1 1
## 2 34 1 1
## 3 42 1 1

Weibull model

Let’s fit the traditional two-parameter Weibull (WEI) distribution. Recall the pdf

f(t|ρ, κ) = κρ (ρt)κ−1 exp [− (ρt)κ] , t > 0, (6-16)
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The pdf above must be included in the R Global Environment, so let’s run the following
code cell:

dW <- function(x, rho, k, log = FALSE) {
if (any(x < 0))

stop(paste("x must be positive", "\n", ""))
if (any(rho <= 0))

stop(paste("rho must be positive", "\n", ""))
if (any(k <= 0))

stop(paste("k must be positive", "\n", ""))
prod1 <- mpfr(-(rho*x)ˆk, 500)
prod2 <- mpfr((rho*x)ˆ(k-1), 500)
f <- k*rho*prod2*exp(prod1)
if (log == FALSE)

density <- f
else density <- log(f)
return(density)

}

and run the following to add the CDF

pW <- function(q, rho, k, lower.tail = TRUE, log.p = FALSE) {
if (any(q < 0))

stop(paste("q must be positive", "\n", ""))
if (any(rho <= 0))

stop(paste("rho must be positive", "\n", ""))
if (any(k <= 0))

stop(paste("k must be positive", "\n", ""))
prod <- -(rho*q)ˆk
cdf <- -expm1(prod)

if (lower.tail == TRUE)
cdf <- cdf

else cdf <- 1 - cdf
if (log.p == FALSE)

cdf <- cdf
else cdf <- log(cdf)
cdf

}

The corresponding model equation is showed below:
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Ti ∼ WEI(ρi, κ), (6-17)
log(ρ) = β01 + β11xi, (6-18)
log(κ) = β02. (6-19)

with ρi, κ > 0 and

xi =
1 if subject i receives the radiation therapy only,

0 if subject i receives radiation plus chemotherap.
(6-20)

This could be specified in R using our framework

distribution <- Surv(Time, Status) ˜ dW
support <- list(interval = c(0, Inf), type = ’continuous’)
formulas <- list(rho.fo = ˜ Therapy, k.fo = ˜ 1)
links <- list(over = c("rho", "k"), fun = rep("log_link", 2))

Initial values and boundaries for numerical optimisation must be established

start_vaues <- list(
rho = list(Intercept = 0, Therapy = 0),
k = list(Intercept = -1)

)

lower <- list(
rho = list(Intercept = -20, Therapy = -5),
k = list(Intercept = -5)

)

Finally, let’s run the estimation

mod_wei_hncd <- maxlogLreg(
formulas = formulas,
y_dist = distribution,
link = links,
support = support,
start = start_vaues,
lower = lower,
data = head_neck_cancer

)
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summary(mod_wei_hncd)

## _______________________________________________________________
## Optimization routine: nlminb
## Standard Error calculation: Hessian from optim
## _______________________________________________________________
## AIC BIC
## 1082.519 1090.212
## _______________________________________________________________
## Fixed effects for log(rho)
## ---------------------------------------------------------------
## Estimate Std. Error Z value Pr(>|z|)
## (Intercept) -6.82476 0.21116 -32.3204 < 2.2e-16 ***
## Therapy 0.78603 0.27888 2.8185 0.004824 **
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
## _______________________________________________________________
## Fixed effects for log(k)
## ---------------------------------------------------------------
## Estimate Std. Error Z value Pr(>|z|)
## (Intercept) -0.16185 0.09212 -1.757 0.07892 .
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
## _______________________________________________________________
## Note: p-values valid under asymptotic normality of estimators
## ---

Exponentiated Weibull model

Let’s estimate the exponentiated Weibull (EW) regression model. Recall the PDF

f(t|ρ, κ, γ) = κργ (ρt)κ−1 exp [− (ρt)κ] {1 − exp [− (ρt)κ]}γ−1
, t > 0. (6-21)

As before, we need the pdf and cdf in the R Global Environment

library(Rmpfr)

dEW <- function(x, rho, k, gam, log = FALSE) {
if (any(x < 0))

stop(paste("x must be positive", "\n", ""))
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if (any(rho <= 0))
stop(paste("rho must be positive", "\n", ""))

if (any(k <= 0))
stop(paste("k must be positive", "\n", ""))

if (any(gam <= 0))
stop(paste("gam must be positive", "\n", ""))

prod1 <- mpfr(-(rho*x)ˆk, 500)
prod2 <- mpfr((rho*x)ˆ(k-1), 500)
f <- k*rho*gam*prod2*exp(prod1)*( -expm1(prod1) )ˆ(gam-1)
if (log == FALSE)

density <- f
else density <- log(f)
return(density)

}

pEW <- function(q, rho, k, gam, lower.tail = TRUE, log.p = FALSE) {
if (any(q < 0))

stop(paste("q must be positive", "\n", ""))
if (any(rho <= 0))

stop(paste("rho must be positive", "\n", ""))
if (any(k <= 0))

stop(paste("k must be positive", "\n", ""))
if (any(gam <= 0))

stop(paste("gam must be positive", "\n", ""))

prod <- mpfr(-(rho*q)ˆk, 500)
cdf <- (-expm1(prod))ˆgam

if (lower.tail == TRUE)
cdf <- cdf

else cdf <- 1 - cdf
if (log.p == FALSE)

cdf <- cdf
else cdf <- log(cdf)
cdf

}

Retrieve the model equation
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Ti ∼ EW (ρi, κ, γ), (6-22)
log(ρi) = β01 + β11xi, (6-23)
log(κ) = β02, (6-24)
log(γ) = β03, (6-25)

with ρi, κ, γ > 0 and xi is the indicator variable for the treatment. Let’s define the model

distribution <- Surv(Time, Status) ˜ dEW
support <- list(interval = c(0, Inf), type = ’continuous’)
formulas <- list(rho.fo = ˜ Therapy, k.fo = ˜ 1, gam.fo = ˜ 1)
links <- list(over = c("rho", "k", "gam"), fun = rep("log_link", 3))

Set configuration options

start_vaues <- list(
rho = list(Intercept = 5, Therapy = 0),
k = list(Intercept = -1),
gam = list(Intercept = 0)

)

lower <- list(
rho = list(Intercept = 0, Therapy = 0),
k = list(Intercept = -10),
gam = list(Intercept = 0)

)

upper <- list(
rho = list(Intercept = 20, Therapy = 5),
k = list(Intercept = 10),
gam = list(Intercept = 10)

)

Fit the model

mod_ew_hncd <- maxlogLreg(
formulas = formulas,
y_dist = distribution,
link = links,
support = support,
start = start_vaues,
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lower = lower,
data = head_neck_cancer

)

summary(mod_ew_hncd)

## _______________________________________________________________
## Optimization routine: nlminb
## Standard Error calculation: Hessian from optim
## _______________________________________________________________
## AIC BIC
## 1064.556 1074.813
## _______________________________________________________________
## Fixed effects for log(rho)
## ---------------------------------------------------------------
## Estimate Std. Error Z value Pr(>|z|)
## (Intercept) 10.18305 15.48487 0.6576 0.51079
## Therapy 0.56090 0.26728 2.0986 0.03585 *
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
## _______________________________________________________________
## Fixed effects for log(k)
## ---------------------------------------------------------------
## Estimate Std. Error Z value Pr(>|z|)
## (Intercept) -2.11601 0.64903 -3.2603 0.001113 **
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
## _______________________________________________________________
## Fixed effects for log(gam)
## ---------------------------------------------------------------
## Estimate Std. Error Z value Pr(>|z|)
## (Intercept) 6.7084 4.2295 1.5861 0.1127
## _______________________________________________________________
## Note: p-values valid under asymptotic normality of estimators
## ---

AIC(mod_ew_hncd, mod_wei_hncd)

## df AIC
## mod_ew_hncd 4 1064.556
## mod_wei_hncd 3 1082.519
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6.6.2. Survival of patients with leukemia
Consider a partial version of the dataset from the Acute Lymphoblastic Leukemia (ALL)
clinic trial employed by Colosimo and Ruiz Giolo (2006b), but firstly analysed by Lawless
(2002). Let’s call it the ALL dataset.

The dataset contains survival times, in weeks, of 17 patients with acute leukemia. For these
patients, their white blood cell counts (WBC) were recorded at the time of diagnosis.

library(EstimationTools)
data(ALL_colosimo_table_4_1)
head(ALL_colosimo_table_4_1, n = 3)

## times status wbc lwbc
## 1 65 1 2300 3.36
## 2 156 1 750 2.88
## 3 100 1 4300 3.63

Weibull model

Consider a Weibull model to fit these data, regarding the following parametrization:

f(t|α, σ) = α

σ

(
t

σ

)α−1
exp

(
− t

σ

α)
, (6-26)

with and without the log transformation over the predictor.

distribution <- Surv(times, status) ˜ dweibull
support <- list(interval = c(0, Inf), type = ’continuous’)

formulas <- list(
shape.fo = ˜ lwbc,
scale.fo = ˜ 1

)

links <- list(
over = c("shape", "scale"),
fun = rep("log_link", 2)

)

model_wei_all_log <- maxlogLreg(
formulas = formulas,
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y_dist = distribution,
support = support,
link = links,
data = ALL_colosimo_table_4_1

)

summary(model_wei_all_log)

## _______________________________________________________________
## Optimization routine: nlminb
## Standard Error calculation: Hessian from optim
## _______________________________________________________________
## AIC BIC
## 174.1553 176.6549
## _______________________________________________________________
## Fixed effects for log(shape)
## ---------------------------------------------------------------
## Estimate Std. Error Z value Pr(>|z|)
## (Intercept) 4.40584 1.82606 2.4128 0.01583 *
## lwbc -1.06469 0.44001 -2.4197 0.01553 *
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
## _______________________________________________________________
## Fixed effects for log(scale)
## ---------------------------------------------------------------
## Estimate Std. Error Z value Pr(>|z|)
## (Intercept) 4.76840 0.22127 21.55 < 2.2e-16 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
## _______________________________________________________________
## Note: p-values valid under asymptotic normality of estimators
## ---

Exponential model

Next, consider exponential models. The corresponding pdf can be derived from the Weibull
distribution by making the shape parameter α = 1; hence,

f(t|σ) = 1
σ

exp
(

− t

σ

)
(6-27)
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formulas <- list(
scale.fo = ˜ lwbc

)
fixed <- list(shape = 1)

links <- list(
over = "scale",
fun = "log_link"

)

lower <- list(
scale = list(Intercept = -30, wbc = -30)

)

model_exp_all_log <- maxlogLreg(
formulas = formulas,
y_dist = distribution,
fixed = fixed,
support = support,
link = links,
data = ALL_colosimo_table_4_1

)

summary(model_exp_all_log)

## _______________________________________________________________
## Optimization routine: nlminb
## Standard Error calculation: Hessian from optim
## _______________________________________________________________
## AIC BIC
## 171.7541 173.4205
## _______________________________________________________________
## Fixed effects for log(scale)
## ---------------------------------------------------------------
## Estimate Std. Error Z value Pr(>|z|)
## (Intercept) 8.47750 1.71122 4.9541 7.268e-07 ***
## lwbc -1.10930 0.41357 -2.6822 0.007313 **
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
## _______________________________________________________________
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## Note: p-values valid under asymptotic normality of estimators
## ---

Finally, we compare the models

AIC(
model_exp_all_log,
model_wei_all_log

)

## df AIC
## model_exp_all_log 2 171.7541
## model_wei_all_log 3 174.1553

According to Colosimo and Ruiz Giolo (2006b), the exponential model is the best. Plausibly
model_exp_all_log is the best model for AIC.

6.7. Conclusions
With the maxlogLreg function we have implemented the usual estimation workflow for
maximization for maximum likelihood estimation in R. Consequently, we enable users to
fit regression models using any distribution with a highly readable syntax and the usual R
methods known by the community such as summary, predict and coef.



7. Diagnostic tools for parametric
survival models

”
The best is the enemy of the good.

— Voltaire

(Writer, historian, and philosopher)

Model validation and evaluation is a key step in data analysis to assess the reliability of
the estimates. Typically, residuals have been used for this purpose because they are feasible
for checking the goodness-of-fit of a model and identifying potential outliers and influential
observations to a fitted model Halabi et al. (2020). Several flavours of residuals for survival
analysis have been proposed: the Cox-Snell to cheque the adequacy of models fitted with
right censored data (Cox and Snell, 1968) and the martingale residuals for investigating the
functional form of a covariate (Therneau et al., 1990; Barlow and Prentice, 1988).

Another useful approach is to search for a definition of residuals that is not dependent on
the type or distribution of the response variable. Randomized quantile residuals are well
suited for this purpose because they generate values that follow a normal distribution, apart
from sampling variability in the estimated parameter (Dunn and Smyth, 1996). They have
been successfully used in R for GLMs (Dunn and Smyth, 2018) and within the GAMLSS
framework (Stasinopoulos et al., 2017a).

7.1. A working example
Consider the application example presented in section 6.6.2, which uses the ALL dataset.
We will simulate a dataset comprising 1000 samples and then proceed to fit the true model
(well-defined) along with two additional ill-defined models.

7.1.1. Dataset
The exponential model with a covariate is the best according to Colosimo and Ruiz Giolo
(2006b), hence let’s simulate a dataset based on it.
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Ti ∼ WEI(α, σi), (7-1)
lwbci ∼ U(lwbcmin, lwbcmax) (7-2)

α = 1, (7-3)
log(σi) = 8.47750 − 1.10930 × lwbci, (7-4)

where U(·) is the continuous uniform distribution, lwbcmin, lwbcmax are the minimum and
maximum logarithm of white blood cells count from the original dataset and WEI(α, σ) is
the Weibull distribution with the following parametrization

f(t|α, σ) = α

σ

(
t

σ

)α−1
exp

(
− t

σ

α)
. (7-5)

7.1.2. Model 0
Model 0 is based on the true model structure specified in equation 7-1, therefore it is defined
as follows

Ti ∼ WEI(α, σ), (7-6)
lwbci ∼ U(lwbcmin, lwbcmax) (7-7)

α = 1, (7-8)
log(σ) = β0 + β1 × lwbci. (7-9)

7.1.3. Model 1
Model 1 is a poorly defined model. It is an exponential with no covariates.

Ti
iid.∼ WEI(α, σ), (7-10)

α = 1, (7-11)
log(σ) = β0, (7-12)

7.1.4. Model 2
This corresponds to an exponential model in terms of wbcˆ0.5, i.e the squared root of white
blood cell counts.
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Ti ∼ WEI(α, σ), (7-13)
wbci ∼ U(wbcmin, wbcmax) (7-14)

α = 1, (7-15)
log(σ) = β0 + β1wbc0.5

i , (7-16)

where wbcmin, wbcmax are the minimum white blood cells counts from the original dataset.
Similarly, a sim exp model 2 can be obtained from a computational implementation using
our maxlogLreg framework.

The three models are compared in table 7-1. Model 0 is the best, as expected.

Model Degrees of Freedom AIC

Model 0 2 10255.16
Model 1 1 10780.34
Model 2 2 10780.16

Table 7-1: AIC for the three models implemented for the working example.

7.1.5. Code implementation
The R code for the three models is displayed in this subsection for users who prefer to follow
the reading with code practise.
# Dataset -----
set.seed(1112)

library(EstimationTools)
data(ALL_colosimo_table_4_1)

n <- 1000
lwbc <- ALL_colosimo_table_4_1$lwbc
lwbc <- runif(n = n, min = min(lwbc), max = max(lwbc))

status <- rep(1, n)

beta_0 <- 8.47750
beta_1 <- -1.10930
scale <- exp(beta_0 + beta_1 * lwbc)
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y <- rweibull(
n = n,
shape = 1,
scale = scale

)

formulas <- list(
scale.fo = ˜ lwbc

)

# Model 0 -----
distribution <- Surv(y, status) ˜ dweibull
support <- list(interval = c(0, Inf), type = ’continuous’)

formulas <- list(
scale.fo = ˜ lwbc

)
fixed <- list(shape = 1)

links <- list(
over = "scale",
fun = "log_link"

)

sim_exp_model_0 <- maxlogLreg(
formulas = formulas,
y_dist = distribution,
fixed = fixed,
support = support,
link = links

)

# Model 1 -----
formulas <- list(

scale.fo = ˜ 1
)

sim_exp_model_1 <- maxlogLreg(
formulas = formulas,



7.2 Residuals and diagnostic plots 85

y_dist = distribution,
fixed = fixed,
support = support,
link = links

)

# Model 2 -----
wbc <- ALL_colosimo_table_4_1$wbc
wbc <- runif(n = n, min = min(wbc), max = max(wbc))

formulas <- list(
scale.fo = ˜ I(wbcˆ0.5)

)

sim_exp_model_2 <- maxlogLreg(
formulas = formulas,
y_dist = distribution,
fixed = fixed,
support = support,
link = links

)

In the subsequent sections of this chapter, we explore the aforementioned residuals, and their
implementation in EstimationTools package using the simulated data we presented above.

7.2. Residuals and diagnostic plots
Residual-based diagnostic plots are particularly regarded for regression models. Let’s state
their definition and revisit their application.

7.2.1. Cox-Snell residuals
Cox and Snell (1968) introduce the concept of Cox-Snell residuals to check the adequacy of
models fitted with right-censored data. They are given by the following expression:

rCS
i = Ĥ(t|Xi), (7-17)
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where Ĥ(t|Xi) is the estimated cumulative hazard function (Barlow and Prentice, 1988;
Therneau and Grambsch, 2000b; Colosimo and Ruiz Giolo, 2006b).
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Figure 7-1: Standard exponential Q-Q plot of Cox-Snell residuals: (a) model 2; (b) model
1; (c) model 0.

Diagnostic plots have been suggested using these residuals. The most remarkable is the Q-Q
plot based on the unit exponential distribution, which is motivated by the fact that if a
random failure time T follows a distribution with a cumulative hazard function H, then the
function H(T ) will be unit exponential distributed (Therneau and Grambsch, 2000a).

Plots of the corresponding Cox-Snell residuals for the models of head and neck cancer dataset
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fitted in section 6.6.1 can be obtained using the following commands:

plot(sim_exp_model_1, type = "cox-snell")
plot(sim_exp_model_2, type = "cox-snell")
plot(sim_exp_model_3, type = "cox-snell")
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Figure 7-2: Standard exponential survival function against Kaplan-Meier estimator of re-
siduals.: (a) model 2; (b) model 1; (c) model 0.

The behaviour of residuals for Model 0 is more appropriate, as anticipated. In contrast,
residuals for both Model 1 and Model 2 deviate from the Exp(1) distribution, indicating
model misspecification, as depicted in Figure 7-1. Moreover, as seen in Figure 7-2, residuals
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for both Model 1 and Model 2 exhibit a more pronounced departure from the straight line
when compared to the residuals for Model 0.
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Figure 7-3: Kaplan-Meier estimator of residuals and theoretical exponential survival fun-
ction: (a) Model 2; (b) Model 1; (c) Model 0.

Likewise, the survival function of Cox-Snell residuals is more suitable for Model 0 (figure
7-3c) because the Kaplan-Meier estimator of residuals is much closer to the theoretical
standard exponential survival function than those for Model 1 and Model 2 (see figures 7-3b
and 7-3a).
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7.2.2. Martingale residuals
Martingale residuals were developed by Therneau et al. (1990) for survival models based
on the residuals for relative risk models proposed by Barlow and Prentice (1988). They are
defined by the following expression:

rM
i = δi − rCS

i , (7-18)

where δi is the failure indicator variable and rCS
i are the Cox-Snell residuals. They are

interpreted as the difference between the number of observed and expected events. Its inter-
pretation is similar to that of the classic linear model: a plot of martingale residuals against
a continuous covariate showing some pattern suggests a non-linear relationship (Colosimo
and Ruiz Giolo, 2006b).

Let’s revisit our working example and the parametric models previously fitted (section 7.1)
to check the martingale residuals. They can be obtained also using the plot() method
specifying the xvar argument.

plot(sim_exp_model_0, type = "martingale", xvar = c("lwbc"))
plot(sim_exp_model_1, type = "martingale", xvar = c("I(wbcˆ0.5)"))
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(a) Residuals for Model 2.

3.0 3.5 4.0 4.5 5.0

−5

−4

−3

−2

−1

0

1
Martingale residuals against lwbc

lwbc

R
es

id
ua

ls

(b) Residuals for Model 0.

Figure 7-4: Martingale residuals. The red line represents the smoothed trend.

In a well-specified survival model, the martingale residuals against covariate plot should not
show any clear pattern. as can be seen in 7-4. Effectively, the misspecified model (Model 2
in the left side) exhibits residuals concentrated in the upper right region of the graph.
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7.2.3. Deviance residuals
The deviance is a goodness-of-fit metric for statistical models. It measures the extent to
which the log-likelihood of the saturated model1 l(βS|y) is different from the log-likelihood
of the chosen model2 l(βµ̂|y). It can be computed as

D(y, µ̂) = −2 (l(βµ̂|y) − l(βS|y)) , (7-19)

where µ̂i is the estimated mean. The statistic D(y, µ̂) is called the deviance. An equivalent
expression is as follows:

D(y, µ̂) = −2
n∑

i=1
[lf (βµ̂|yi) − lf (βS|yi)] =

n∑
i=1

di, (7-20)

where lf (·|yi) is the logarithm of the probability density/mass function and di is the contri-
bution of each value of the response variable in the dataset to the deviance. Since l(βµ̂|y) ≤
l(βS|y), then D(y, µ̂) ≥ 0 and consequently ∑n

i=1 di ≥ 0 (Agresti, 2015b).

The deviance residuals are computed using di

rD
i = sign(yi − Ê(Yi))d1/2

i , (7-21)

Another valid expression in the context of survival analysis with right-censored data can
also be obtained as a transformation to normalise the martingale residuals (Therneau et al.,
1990), which produces a more symmetric configuration around the zero y-axis value in a plot
of residuals against a covariate, in such a way as to facilitate outliers detection (Colosimo
and Ruiz Giolo, 2006b). These right-censored deviance residuals are defined by the following
expression:

rCD
i = sign(rM

i )
[
−2

(
rM

i + δi log(δi − rM
i )
)]1/2

, (7-22)

where,

sign(rM
i ) =


−1 if rM

i < 0,

0 if rM
i = 0,

1 if rM
i > 0,

1The saturated model has a separate parameter for each observation (Agresti, 2015a).
2The chosen model has a separate parameter for each covariate selected by the analyst.
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and rM
i are the Martingale residuals. Deviance residuals used in survival analysis are similar

in form to those of the Poisson regression, and analogously, they are used to measure the
discrepancy of a linear model (McCullagh and Nelder, 1989). Indeed, deviance residuals are
random variables approximately standard normally distributed (Pregibon, 1981; Cordeiro
and NETO, 2004).

For the working example (section 7.1), the deviance residuals are shown in figure 7-5. As
usual, they can be obtained using the plot() method as follows:

plot(sim_exp_model_1, type = "right-censored-deviance")
plot(sim_exp_model_2, type = "right-censored-deviance")
plot(sim_exp_model_3, type = "right-censored-deviance")

Model 0 (shown in figure 7-5c) displays a closer random pattern among the three models.

7.2.4. Randomized Quantile Residuals
Let F (y|θ) be the cumulative distribution function of the response variable y. If F (·) is
continuous, the F (y|θ) values are uniformly distributed on [0, 1]. In this case, the rando-
mised quantile residuals (RQR) are defined by Dunn and Smyth (1996) with the following
expression:

rq
i = Φ−1 [F (y|θ)] , (7-23)

where Φ(·) is the cumulative distribution function of the standard normal. Stasinopoulos
et al. (2017a) plot RQR against fitted values and RQR against index and applied the usual
interpretation: the plot should show a random scatter of residuals around zero, indicating
that the residuals are uncorrelated with the fitted values.

Let’s verify this behaviour with the working example (section 7.1) using, again, the plot()
method. The output plots for the three models are displayed and compared in figures ??,
7-7a and 7-8a.

plot(sim_exp_model_1, type = "rqres", parameter= "scale")
plot(sim_exp_model_2, type = "rqres", parameter= "scale")
plot(sim_exp_model_3, type = "rqres", parameter= "scale")

In addition to sampling variability in the parameter vector θ̂, rq
i have a standard normal

distribution. Accordingly, a Q-Q plot of the standard normal distribution against rq
i is a

viable diagnostic plot, as illustrated by Dunn and Smyth (1996).

RQRs against fitted values and RQRs against index plots show a significantly better ade-
quacy for Model 0 compared to model 2 and model 1 (see figures 7-6 and 7-7). However,
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(a) Residuals for Model 2.
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(b) Residuals for Model 1.
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(c) Residuals for Model 0.

Figure 7-5: Right censored deviance residuals.

the normal Q-Q plot of RQRs is more conclusive: the residuals for Model 0 in figure 7-8 are
nearly normal.
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Figure 7-6: RQRs against scale parameter: (a) Model 2; (b) Model 1; (c) Model 0. The red
line represents the smoothed trend.
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Figure 7-7: RQRs for scale parameter against index: (a) Model 2; (b) Model 1; (c) Model
0. The red line represents the smoothed trend.
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Figure 7-8: Normal Q-Q plot of RQRs for scale parameter: (a) Model 2; (b) Model 1; (c)
Model 0. The red line represents the smoothed trend.
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7.3. Computational issues
Both Cox-Snell residuals and martingale residuals, as well as the censored deviance residuals,
depend on the computation of the cumulative hazard function (CHF) of the fitted model.
Therefore, we implemented a function to compute CHF given a probability density function,
as well as a method to perform the same calculation for maxlogL objects. We will briefly
examine them below.

7.3.1. cum hazard fun
cum_hazard_fun(

distr,
support = NULL,
method = c("log_sf", "integration"),
routine = NULL

)

This function takes the name of a distribution and computes its CHF using two methods

method = "log sf" computes the CHF by exploiting the mathematical relation it
holds with the survival function, i.e, it uses the following expression:

H(t) = − log
(
S(t|θ̂)

)
,

where S(t|θ̂) is the survival function using the estimated parameters and H(·) is the
cumulative hazard function.

method = ı̈ntegration" just integrates the hazard function,

H(t) =
∫ t

0
h(s)ds.

The support input parameter is useful when method = ı̈ntegration" is set up. For exam-
ple, consider the Weibull distribution, then

h(t) = α

σ

(
t

σ

)α−1
, (7-24)

H(t) =
(

t

σ

)α

, (7-25)

where σ, α > 0 and t > 0. Let’s compare the value of the closed expression against that
obtained by cum_hazard_fun()
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Hweibull1 <- function(x, scale, shape){
(x/scale)ˆshape

}

Hweibull2 <- cum_hazard_fun(
distr = ’dweibull’,
method = "log_sf"

)

Hweibull1(0.2, shape = 2, scale = 1)

## [1] 0.04

Hweibull2(0.2, shape = 2, scale = 1)

## [1] 0.04

7.3.2. cum hazard.maxlogL
cum_hazard.maxlogL(object, ...)

This is a wrapper function specifically designed to provide cum_hazard_fun() with the CDF
from the R environment and optionally the support stored into maxlogL models to compute
the CHF.

7.4. Illustrative example
Let’s examine the Head and neck cancer application example presented in the previous
chapter in section 6.6.1.

Recall that we fitted a Weibull and an exponentiated Weibull. Likewise, we confirmed that
the exponentiated Weibull model is more adequate according to the AIC. Let’s check the
models for or computing and visualising the corresponding residuals.

Let’s compare their Cox-Snell residuals (figures 7-9 and 7-10). The top left, top right and
bottom right plots reveal Cox-Snell residuals much closer to the standard exponential dis-
tribution for the exponentiated Weibull model (whose residuals are represented in 7-10),
hence it is more adequate to represent the dataset.
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Figure 7-9: Diagnostic plots for the Weibull model of the head and neck cancer dataset using
Cox-Snell residuals. Top left: standard exponential Q-Q plot of residuals, top
right: Kaplan-Meier estimator of residuals and theoretical exponential survival
function, bottom left: density plot of residuals, bottom right: comparison of
the standard exponential survival function with the Kaplan-Meier estimator of
residuals.



100 7 Diagnostic tools for parametric survival models

0 1 2 3 4 5

0.0

0.5

1.0

1.5

2.0

Residuals against Exp(1)

Theoretical exponential quantiles

S
am

pl
e 

qu
an

til
es

 (
C

ox
−

S
ne

ll 
re

si
du

al
s)

5150

0.0 0.5 1.0 1.5 2.0

0.0

0.2

0.4

0.6

0.8

1.0

Survival function of Cox−Snell residuals

Residuals

E
st

im
at

ed
 S

(r
es

)

Kaplan−Meier
Exp(1)

−0.5 0.0 0.5 1.0 1.5 2.0 2.5

0.
0

0.
2

0.
4

0.
6

0.
8

Density estimate plot

N = 96   Bandwidth = 0.2188

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Exp(1) against KM of residuals

S(res) Kaplan−Meier

S
(r

es
) 

E
xp

(1
)

Figure 7-10: Diagnostic plots for the exponentiated Weibull model of the head and neck
cancer dataset using Cox-Snell residuals. Top left: standard exponential Q-Q
plot of residuals, top right: Kaplan-Meier estimator of residuals and theo-
retical exponential survival function, bottom left: density plot of residuals,
bottom right: comparison of the standard exponential survival function with
the Kaplan-Meier estimator of residuals.
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On the other hand, let’s examine the RQRs are shown in figure 7-11. Consistently, figure
7-11b exhibits a closer behaviour of residuals than figure 7-11a, hence the first one is more
adequate.
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(a) Weibull model.
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(b) Exponentiated Weibull model.

Figure 7-11: Standard normal Q-Q plot of residuals.

7.5. Conclusions
Residuals are an essential tool for evaluating the fit of parametric survival models. Cox-Snell
residuals are used to assess the adequacy of a survival model, martingale residuals are useful
to investigate the relationship between a response variable and covariates, and deviance
residuals are used to evaluate the overall fit of a model. Randomized quantile residuals are
a flexible approach that can be used to identify outlying observations and assess model fit.
They are particularly useful when dealing with datasets with complex distributions.

The residuals method for maxlogL regression objects allows the computation of all the
previously mentioned residuals for parametric models. Hence, with EstimationTools we pro-
vided a flexible and readable framework not only to fit but also diagnose regression models.



Part III

Implementation of a lifetime distribution



8. The odd Weibull distribution

”
The sciences do not try to explain, they hardly even try
to interpret, they mainly make models. By a model is
meant a mathematical construct which, with the addi-
tion of certain verbal interpretations, describes observed
phenomena. The justification of such a mathematical
construct is solely and precisely that it is expected to
work.

— John Von Neumann

(A true polymath)

The classical two-parameter Weibull distribution is a parsimonious and convenient way to
model lifetime data because it describes skewed density shapes and fits data with monotonic
hazard rates (Jiang et al., 2008), which are typical in reliability. However, there are some
mechanical or electronic components with a bathtub-shaped hazard function because they
have a rapidly decreasing initial hazard rate; other situations are described by unimodal
failure rates. An example of the last case is observed in the course of a disease whose mortality
reaches a maximum after some finite period and decreases progressively; the former case is
in agreement with the behaviour of electronic equipment (Prataviera et al., 2018). Various
generalisations of the Weibull distribution have been proposed to model this kind of dataset.
Such is the case for the exponentiated Weibull family (Mudholkar and Srivastava, 1993), the
modified Weibull distribution (Xie et al., 2002), the flexible Weibull extension distribution
(Bebbington et al., 2007) and the generalized modified Weibull family (Carrasco et al., 2008).
Despite these families being flexible, they do not exhibit a comfortable bathtub-shaped failure
rate, which means that the second portion of the hazard curve is flat and long (Jiang et al.,
2008). This property is helpful because it properly models the useful period (Bebbington
et al., 2006). With the aim of solving this matter, Cooray (2006) presented a generalisation
of the Weibull distribution derived from the odds of the Weibull and inverse Weibull (Fréchet)
families.

Once a probability distribution family fits a response variable, it is useful to obtain expres-
sions that explain its parameters with covariates through regression models. In this sense,
many authors have developed regression models that produce estimates for one particular fa-
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mily, such as the Quadratic Regression Model with Non-constant Spread Parameter Meeker
and Escobar (1998), the Log-generalized modified Weibull regression model (Ortega et al.,
2011) and the exponentiated exponential mixture model (Mazucheli et al., 2013). Here, we
implement the odd Weibull distribution in our R package RelDists (Hernandez et al., 2023)
and perform parameter estimation using maxlogL and maxlogLreg from EstimationTools.

8.1. The distribution
Cooray Cooray (2006) proposed the odd Weibull (OW) distribution for survival analysis. This
arises if a log-logistic distribution is assumed for the odds of death of variables with Weibull or
Fréchet distribution. Further details are provided in Cooray (2006). The cumulative density
function (CDF) of the odd Weibull (OW) family has the following expression:

F (t) = 1 −
[
1 +

(
e(µt)σ − 1

)ν]−1
(8-1)

where µ is the rate parameter, σ and ν are the shape parameters, with t > 0, µ > 0 and σν >

0. The probability density function (PDF) is:

f(t) =
(

σν

t

)
(µt)σe(µt)σ

(
e(µt)σ − 1

)ν−1

[
1 +

(
e(µt)σ − 1

)ν]−2
.

(8-2)

In other words, we write T ∼ OW(µ, σ, ν) if the distribution of T is (8-2). This distribution
has the following particular cases (Cooray, 2006; Jiang et al., 2008):

For ν = 1, expressions (8-1) and (8-2) are those of the Weibull distribution.

For ν = −1, expressions (8-1) and (8-2) are those of the inverse Weibull (Fréchet)
distribution.

The hazard function (HF) represents the failure rate and for the OW distribution has the
following expression:

h(t) =
(

σν

t

)
(µt)σe(µt)σ

(
e(µt)σ − 1

)ν−1

[
1 +

(
e(µt)σ − 1

)ν]−1
.

(8-3)

According to Almalki and Nadarajah (2014) and Cooray (2006), the OW hazard function
takes the following shapes:
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h(t) increases if σ > 1 and σν > 1.

h(t) decreases if σ < 1 and σν < 1.

h(t) is unimodal shaped if σ < 0 and ν < 0 or σ < 1 and σν ≥ 1.

h(t) is bathtub shaped if σ > 1 and σν ≥ 1.

In figures 8-1a and 8-1b are shown some different possible curves obtained for CDF and
PDF. Additionally, figure 8-1c shows four possible shapes for hazard functions: unimodal,
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Figure 8-1: (a) Probability density function, (b) cumulative density function, and (c) hazard
function for the Odd Weibull distribution.
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decreasing, increasing, and bathtub. Figure 8-2a illustrates the subspaces corresponding to
different hazard shapes. It is important to note that parameter µ does not influence the
hazard function.
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Figure 8-2: Classification of hazard function shape according to TTT plot shape: : (a)
Hazard function shape according to the OW parametric space, (b) TTT plots
of simulated data for a model with covariates for µ using set.seed(345) in R
(sample size of 2000 in each case).

The quantile function is as follows:

Q(u) = F −1(t) =
(

1
µ

){
log

[
1 +

(
u

1 − u

)1/ν
]}1/σ

(8-4)

where 0 < u < 1 is a probability representing F (t). The functions (8-1), (8-2), (8-3) and (8-4)
were implemented in the RelDists package and can be accessed by invoking the functions
dOW, pOW, hOW and qOW respectively.

According to Jiang et al. (2008) and Cooray (2015), the kth moment of an odd Weibull
distributed random variable is given by the following expression:

E(T k) =
∫ ∞

0
tkf(t)dt = k

σ

∫ ∞

0

x(k/σ)−1

1 + (ex − 1)ν dx. (8-5)

This integral does not have a closed form and must be evaluated numerically. Moreover,
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Cooray (2015) proved that the kth moment is finite if σ > 0 and ν > 0, or if σ < 0 and
ν < 0, when νσ > k.

8.2. Estimation
Suppose that T1, T2, ..., Tn is a random sample of size n for which the PDF is an OW dis-
tribution and let θ = [µ, σ, ν]⊤ be the vector of unknown parameters of equation (8-2). The
log-likelihood can be shown to be Cooray (2015):

l(θ) = n log
(
σνµ−σ

)
+ (σ − 1)

n∑
i=1

log ti +
n∑

i=1
(µti)σ

+ (ν − 1)
n∑

i=1
log

(
e(µti)σ − 1

)
− 2

n∑
i=1

log
[
1 +

(
e(µtj)σ − 1

)ν]
,

(8-6)

The maximum likelihood (ML) estimator of θ is θ̂. It can be obtained by solving the following
nonlinear system of equations:

[
∂l(θ)
∂µ

,
∂l(θ)
∂σ

,
∂l(θ)

∂ν

]⊤

= 0, (8-7)

where the derivatives can be expressed as follows:

∂l(θ)
∂µ

= n

σ
+

n∑
i=1

log
(
e(µti)σ − 1

)

− 2
n∑

i=1

(
e(µti)σ − 1

)ν
log

(
e(µti)σ − 1

)
1 + (e(µti)σ − 1)ν ,

(8-8)

∂l(θ)
∂σ

= − nµσ − µσ
n∑

i=1
(µti)σ

− µσ(ν − 1)
n∑

i=1

(µti)σe(µti)σ

e(µti)σ − 1

+ 2µνσ
n∑

i=1

(µti)σe(µti)σ
(
e(µti)σ − 1

)ν−1

1 + (e(µti)σ − 1)ν ,

(8-9)
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∂l(θ)
∂ν

=n

σ
+ 1

σ

n∑
i=1

log(µti)σ + 1
σ

n∑
i=1

(µti)σ log(µti)σ

+ 1
σ

(ν − 1)
n∑

i=1

(µti)σe(µti)σ log(µti)σ

e(µti)σ − 1

− 2ν

σ

n∑
i=1

(µti)σetj

(
e(µti)σ − 1

)ν−1
log(µti)σ

1 + (e(µti)σ − 1)ν ,

(8-10)

On the other hand, θ̂ can be computed using the maxlogL function to estimate distribution
parameters or maxlogLreg to implement distributional regression models and the RelDists
(Hernandez et al., 2023) package to obtain the OW distribution in R (R Core Team, 2023).

8.3. Computational implementation
As stated before, the PDF, CDF and hazard function were implemented as the R functions
dOW, pOW and hOW respectively. Once these functions are available, they can be used within
the EstimationTools framework to perform maximum likelihood estimation. Additionally, we
implemented the quantile function in qOW function and the random number generator was
implemented in rOW function. Visit the distribution script in RelDists package for further
computational details.

maxlogLreg has been conceived originally to solve maximum likelihood estimation with
box-constrained supports, whereas the OW distribution has some convenient subregions
with hyperbolic boundaries. We tackled this problem by adding a penalisation term to the
log-likelihood computed under the hood, as follows:

l(θ(β)|y) =
(

n∑
i=1

log Ri1 · f(yi|θ(β)) + Ri2 · S(yi|θ(β)) + Ri3 · F (yi|θ(β))
)

− λ1A(θ),

(8-11)

where β is a vector of regression parameters, θ(β) are the distribution parameters (which
can be expressed in terms of regression parameters and covariates) and Ril is an element of
the status matrix defined as follows:

Ril =
1, if sample unit i has status l,

0, in other case,
(8-12)

with i = 1, 2, . . . , n and l = 1, 2, 3 (l = 1: observation status, l = 2: right censorship status,
l = 3: left censorship status). 1A(x) is the indicator function of a subset A of the form A =

https://github.com/ousuga/RelDists/blob/master/R/dOW.R
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{θ|h(θ) > c}, or A = {θ|h(θ) = c} or A = {θ|h(θ) < c}; with c a constant. The equation
(8-11) includes a penalty term with a penalisation parameter λ → ∞ (which is set to 1×1010

in practise). The penalisation parameter significantly lowers the log-likelihood function when
the optimal values of θ(β) fail to satisfy the constraints in A. This mechanism ensures that
the distribution parameters remain within the appropriate region of the parameter space.

8.3.1. Estimation without covariates
Estimation of the OW distribution is sensitive to initial values. From our own experience, a
good initial guess for the scale parameter µ is the inverse mean. For σ and ν there are more
possibilities. It can be distinguished from five regions related to the shape of the hazard
function Cooray (2006). These regions are identified in figure 8-2a.

Therefore, the parametric space can be bounded by knowing the hazard shape. To estimate
the hazard shape, we calculate the scaled empirical time on test transform (TTT). Moreover,
we use the fact that the hazard function shape may be decreasing, increasing, bathtub, and
unimodal if the TTT transform is convex, concave, convex then concave, and concave then
convex, respectively. Some examples with simulated data are presented in figure 8-2b.

Thus, for non-censored data the scaled empirical TTT can be computed based on the em-
pirical cumulative distribution function (check Aarset’s paper (Aarset, 1987)). The final
expression is given by

ϕn

(
i

n

)
=

(
i∑

j=1
T(j)

)
+ (n − i)T(i)

n∑
i=j

Tj

, (8-13)

where T(r) is the r th order statistic, with T(0) = 0, r = 1, 2, . . . , n, and n being the sample
size. For censored data, a scaled empirical TTT can be computed using the expression of
Kaplan-Meier survival estimator, based on expressions by Westberg and Klefsjö (1994)

ϕn

(
i

n

)
=

i∑
j=1

[
j∏

k=1

(
1 − dk

nk

)] (
T(j) − T(j−1)

)
n∑

j=1

[
j∏

k=1

(
1 − dk

nk

)
(Tj − Tj−1)

] , (8-14)

where di are the number of events and is the ni the number of units at risk. These equations
were implemented in TTTE_Analytical function from EstimationTools.

We implemented initValuesOW, which uses TTTE_Analytical to compute the empirical
TTT and estimates a LOESS curve from it. Then, it calculates the inflexion point to deter-
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mine the empirical TTT shape and therefore the hazard shape from the sample. Through
this calculation, initValuesOW suggests fixed values as initial guesses, but allows the es-
tablishment of a subspace for parameter search corresponding to the hazard shape in the
inequalities input parameter of maxlogLreg function. We also implemented param.start,
which takes an initValuesOW object and extracts the initial guesses to set sigma.start and
nu.start arguments in gamlss function.

By default, initValuesOW function sets the bounds in the first quadrant if the data co-
rrespond a to a hazard unimodal shape. If the estimation routine fails (e.g. gamlss or
maxlogLreg) and the user suspects that the hazard function is unimodal, we suggest ma-
nually changing the initial guesses and valid regions with values located on the third qua-
drant.

There are cases where several inflexion points may be detected because the LOESS curve
is not smooth enough. Additionally, there exists some extent of a lack of identifiability near
the boundary of the parametric regions that define the available hazard function shapes. In
figures 8-3 can be seen that points on the left side of the plot correspond to TTT plots
similar to those points on the right side of the plot. Additional examples illustrating location
in parametric space and TTT plot shape can be found in Appendix E.

To overcome these issues, we encourage potential users to use initValuesOW and its plot
method in their exploratory analysis. For example, one can tune the LOESS parameters,
such as the span argument. Tuning initial guesses may be necessary.

8.3.2. Estimation using covariates
Another potential pitfall is that the TTT plot does not allow control of the effect of covariates
that explain the parameters. Let’s take a particular case as an example and consider two
data sets simulated from the following model:

y ∼ OW (µ, σ, ν),
log(µ) = α0 + α1X,

σ = 2,

ν = 2,

X ∼ U(0, 1),

(8-15)

with Θ = (α0 = 0.05, α1 = −8)⊤, i = 1, 2, . . . , n; we tested n = 50 and n = 10000.
The selected parameter values for σ and ν correspond to an increasing hazard case (see
Figure 8-2a), however TTT plots in figure 8-4 suggests a decreasing pattern, and the models
correspond to a decreasing hazard rate. This happens because µ has a decreasing behaviour
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(c) Unimodal (positive) parametric subspace.
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(d) Some TTT plots for values indicated in (c).

Figure 8-3: Parametric sub-spaces and TTT plots corresponding to data with increasing
and unimodal (quadrant I) hazard function shapes. TTT plots are computed
with simulated OW variables (sample size of 2000).

and has a great influence on the hazard function in this case (recall equation 8-3). Actually,
the TTT plot does not allow visualisation of the effect of covariates in several cases. This is
a typical case of Simpson’s paradox, Carlson (2020); Wang et al. (2018) for further details.

Despite these issues, implementation of expm1 and log1p is enough to achieve successful
estimation using covariates and linear predictors for the distribution parameters.
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(a) n = 50.
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(b) n = 10000.

Figure 8-4: TTT plots of simulated data for a model with covariates for µ using
set.seed(345) in R.

8.4. Application examples
In this section, we supply two applications to real datasets and one simulated dataset to
illustrate the importance of OW distribution. Estimation is performed as stated in sections
8.2 and 8.3. In the first two examples, the original ML estimators are compared with those
computed with maxlogLreg.

For estimation, it is necessary to load RelDists package in order to set the dOW and pOW
functions and EstimationTools for fitting models. The packages can be downloaded by typing
the following instructions in R:

install.packages("RelDists")
require("RelDists")

8.4.1. Time to failure on electronic equipment

Cooray (2015) used the following data provided by Wang (2000) in order to fit an OW
distribution through ML estimation:

5, 11, 21, 31, 46, 75, 98, 122, 145, 165, 195, 224, 245, 293, 321, 330, 350, 420.

The data above are the time to failure of an electronic device in hours. They can be loaded
as follows.
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# Data set input
data("equipment")

Results

The estimation of OW distribution parameters can be performed using an only-intercept
model, as follows:

y ∼ OW (µ, σ, ν)
µ = α0

σ = β0

ν = γ0.

(8-16)

Using our initValuesOW, we detected a bathtub hazard shape, which corresponds to the
convex-then-concave shape of the TTT plot (see figure 8-5).
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Figure 8-5: TTT plot of electronic equipment data.

We obtained the estimates shown in the third column of table 8-1.

Code implementation

The R code to reproduce the results from section 8.4.1 is displayed in this section. The
initValuesOW function produces an object that stores initial guesses for σ, ν and the valid
region for both parameters. It can be computed and as follows:
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Parameter ML Cooray (2015) ML maxlogLreg

µ 0.00535 0.0054
σ 3.22388 3.2213
ν 0.28424 0.2846

Table 8-1: Estimates for time to failure on electronic equipment data. The ML estimates in
the second column are from Cooray Cooray (2015), and the third column ones
are our estimates.

# Data and TTT plot -----------------------------
my_initial_guess <- initValuesOW(formula = equipment ˜ 1)
summary(my_initial_guess)

After that, TTT can be plotted:

par(mfrow=c(1,1), family="serif", cex.lab=1.8, cex.axis=1.8, mgp=c(3.6,1.1,0),
mai=c(1,1.2,0.1,0.1))

plot(
my_initial_guess,
curve_options = list(lwd=3, col="red"),
cex = 1.6, las = 1

)

legend.HazardShape(
x = "bottomright", xpd = FALSE, bty=’n’, col = c(1, "red"),
lwd = c(1, 3), pch = c(1, NA), pt.cex = 1.6, cex = 1.8

)

Equation (8-16) can be written in the maxlogLreg style. First, specify the assumed distri-
bution and its support:
distribution <- equipment ˜ dOW
support <- list(interval = c(0, Inf), type = ’continuous’)

Then, the linear predictors,

formulas <- list(mu.fo = ˜ 1, sigma.fo = ˜ 1, nu.fo = ˜ 1)

the initial values,

start_values <- list(
mu = list(Intercept = 1/mean(equipment)),
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sigma = list(Intercept = my_initial_guess$sigma.start),
nu = list(Intercept = my_initial_guess$nu.start)

)

and the box-constrains for each parameter

lower <- list(
mu = list(Intercept = 1e-4),
sigma = list(Intercept = 1),
nu = list(Intercept = 1e-4)

)
upper <- list(

mu = list(Intercept = 0.1),
sigma = list(Intercept = 10),
nu = list(Intercept = 1)

)

Note the inclusion of the non-linear constrain:

ineq <- my_initial_guess$nu.valid
ineq

Finally, run the estimation process

equipment_model <- maxlogLreg(
formulas = formulas,
y_dist = distribution,
support = support,
start = start_values,
lower = lower,
inequalities = ineq,
control = list(iter.max = 200)

)

summary(equipment_model)

8.4.2. Mortality in mice exposed to radiation

A dataset with 208 data points provided by ? with the ages at death in weeks for male mice
exposed to 240r of gamma radiation.
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data("mice")
head(mice, n = 6)

## [1] 40 48 50 54 56 59

Results

We identified the hazard shape with initValuesOW, which increased in accordance with
Cooray (2006) (see figure 8-6).
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Figure 8-6: TTT plot of mortality of mice data.

Similarly, we implemented a workflow with maxlogLreg to get the estimates in the third
column of table 8-2.

Parameter ML Cooray (2006) ML maxlogLreg

µ 0.00761 0.0076
σ 6.22780 6.2117
ν 0.74950 0.7514

Table 8-2: Estimates for mortality of mice mortality data.

Code implementation

Here, we display the code to reproduce the results from section 8.4.2.
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# Data and TTT plot -----------------------------
data("mice")
init_vals <- initValuesOW(formula = mice ˜ 1)

plot(
init_vals,
curve_options = list(lwd=3, col="red"),
cex = 1.6, las = 1

)

legend.HazardShape(
x = "bottomright", xpd = FALSE, bty=’n’, col = c(1, "red"),
lwd = c(1, 3), pch = c(1, NA), pt.cex = 1.6, cex = 1.8

)

# Fit the model -----------------------------
distribution <- mice ˜ dOW
support <- list(interval = c(0, Inf), type = ’continuous’)

formulas <- list(
mu.fo = ˜ 1,
sigma.fo = ˜ 1,
nu.fo = ˜ 1

)

start_values <- list(
mu = list(Intercept = 1/mean(mice)),
sigma = list(Intercept = init_vals$sigma.start),
nu = list(Intercept = init_vals$nu.start)

)
lower <- list(

mu = list(Intercept = 1e-4),
sigma = list(Intercept = 1),
nu = list(Intercept = 1e-4)

)
upper <- list(

mu = list(Intercept = 0.1),
sigma = list(Intercept = 10),
nu = list(Intercept = 1)
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)
ineq <- init_vals$nu.valid

mice_model <- maxlogLreg(
formulas = formulas,
y_dist = distribution,
support = support,
start = start_values,
lower = lower,
inequalities = ineq

)

summary(mice_model)

8.5. Simulation study
Cooray (2006) fitted an OW distribution through ML estimation using the time-to-failure
data set Aarset (1987). Estimation leads to µe ≈ 0.0187, σe ≈ 7 and νe ≈ 0.09 for our
parametrization. We used these values and conducted a simulation study to obtain a better
understanding of the effect of the censoring rate in the OW fitting process. Therefore, we
generated 1000 times OW(µe, σe, νe) variates with sample sizes n = 10, 30, 40, ..., 300 and
censoring percentage cp = 0 %, 10 %, ..., 40 %, i.e, we simulated 50000 random samples OW
distributed.

The simulation results are reported in figure 8-8. Through the mean square error (MSE),
we verified the correct performance of the OW estimation process and initValuesOW since
the error of estimates decreases as the censoring rate decreases and tends to zero as the
sample size increases, as expected by the consistency of maximum likelihood estimates.
It seems that the MSE stabilises quite quickly, and for a sample size of approximately
between 50 and 100, it becomes quite stable across all censoring percentages. Furthermore,
our implementation demonstrates greater computational efficiency. In figure 8-7 we can
observe that our implementation increases the rate of successful estimations. The behaviour
of the mean value, median value, and bias of the estimates can be found in Appendix E.
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Figure 8-7: Proportion of successful and failed simulations for (a) the standard estimation,
(b) estimation enhanced with initValuesOW in failure on electronic equipment
data.

8.6. Conclusions
In this chapter, we implemented the odd Weibull in a set-up in which the parameters can
vary across observations through linear predictors. Existing implementations of optimisation
algorithms can be used to compute the maximum likelihood estimators of the odd Weibull
distribution, and maxlogLreg automates the log-likelihood computation. We implemented an
algorithm to obtain initial guesses for parameters based on the parametric space described by
Cooray (2006). Moreover, the implementation allows the fit of regression models. We fitted
real data in two application examples and conducted a simulation study to demonstrate the
usefulness of the implementation. As expected, the results in the application examples are
close to those previously obtained by Cooray (2006, 2015), and the estimates are better as
the sample size increases in the simulation studies.
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Figure 8-8: Mean squared error (MSE) for estimated parameters, (a) for µ̂, (b) for σ̂ and
(c) for ν̂. The dashed line indicates MSE = 0.



Part IV

Concluding remarks



9. Future directions and conclusions

”
The future is already here – it’s just not evenly distri-
buted

— William Gibson

(Fiction writer and essayist)

This research work aimed to create and release EstimationTools, a package intended to
provide the statistics and data science community with general-purpose tools useful for
estimating the parameters of probability distributions. Although our proposal is useful for
the entire scientific community, it was endowed with features to estimate parametric models
in survival analysis.

In the following sections, we will reflect on the limitations and opportunities that the findings
of this study bring to the academic community and the R community.

9.1. Advantages and limitations
EstimationTools, and specifically maxlogLreg function offers a grammar for flexible distri-
bution regression model declaration that resembles the mathematical syntax used by statis-
ticians. To illustrate the concept, we consider the following heteroskedastic model:

dist <- y ˜ dnorm
support <- list(

interval = c(-Inf, Inf),
type = ’continuous’

)
link <- list(

over = "sd", fun = "log_link"
)
formulas <- list(

mean.fo = ˜ x, sd.fo = ˜ x
)

Xi ∼ U(−5, 6),
yi ∼ N(µi, σi),
µi = α0 + α1Xi,

log(σi) = β0 + β1Xi

(9-1)
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Our approach also allows users to control every aspect of log-likelihood optimisation through
algorithms implemented in R. However, this syntax can be complex for novice users of R
(recall section 8.4.1, where non-linear restrictions and initial values should have been set in
addition to the distribution, its support, and formulas).

9.2. Potential research directions
Software development is a never ending endeavour. The previously mentioned limitations
provide both us and computational statistics developers with opportunities to explore and
suggest alternative solutions. These new approaches could, on one hand, be grounded in
fundamental concepts such as Object-Oriented Programming and non-linear constrained
optimisation On the other hand, they could be developed on the basis of other distributional
regression approaches, such as Generalized Additive Models for Location, Scale, and Shape
(GAMLSS) (Rigby and Stasinopoulos, 2005). Finally, we found that it is possible to propose
detection functions based on survival functions for estimating population density.

9.2.1. Object-Oriented approach
Our proposal is probably very appealing to users who are not oriented towards software
engineering, as all the necessary elements for model declaration are provided one by one
before model fitting. However, from a software engineering perspective, it would be mo-
re convenient to take advantage of encapsulation. Therefore, elements such as d-functions
(densities), p-functions (cumulative densities), q-functions (quantile), support, and fixed,
which are provided to maxlogLreg, could be stored in an object.

Some packages have made progress in this direction. For example, distributions3 provides
PDF, CDF, quantile, and random generator generic methods for probability distributions
using the S3 object system (Hayes et al., 2022). Similarly, distributional implements distri-
butions as vectorised S3 objects and additionally offers methods to compute summary sta-
tistics such as mean, variance, kurtosis, and skewness (O’Hara-Wild et al., 2023); methods
for statistical inference such as hilo for confidence intervals or mean/median distribution
computation; and methods for computing the likelihood. On the other hand, distrEx (Ruck-
deschel et al., 2006)and distr (Ruckdeschel and Kohl, 2014) serve similar interfaces with
the S4 system. Perhaps the most comprehensive implementation is distrMod, it uses distr
and distrEx methods to extend the support of object-oriented implementation of probability
models via several new S4 classes and methods in base R for distributions and parametric
modelling (Kohl and Ruckdeschel, 2010).

The gamlss package has created an S3 object of class gamlss.family, which is a halfway
solution between an object-oriented approach and an informal declaration. All of these al-
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ternatives are interesting starting points, but they may move potential users away from
simpler approaches. In this scenario, the estimation function (e.g., maxlogLreg) could be
a method for these distributions, or the distributions could be aggregated into estimation
objects/functions, similar to the gamlss workflow.

Despite the aforementioned advantages, these methods are only feasible for intermediate/ad-
vanced users or even R developers. To overcome this situation, a generic method to populate
gamlss.family objects could be implemented. Our gamlss.extra package closes this gap.

9.2.2. Non-linear constrains
maxlogLreg works with nlminb routine by default and was designed to run specifically with
box-constrained routines such as optim, ga or DEoptim. Additional optimisation routines can
be tested using the set optimizer adapter function. In this study, we addressed non-linear
constraints using a penalisation term (recall equation (8-11)). However, modern maximum
likelihood estimation problems have much to do with non-linear boundaries. In particular, we
dealt with hyperbolic constraints on the estimation of OW parameters (recall figure 8-2a).
Regarding this fact, it is worth mentioning that the special routines designed for non-linear
constrained optimisation have not been explored. One particularly interesting alternative
could be nloptr (Johnson, 2022).

9.2.3. Contributions to gamlss project
gamlss package is a huge and high-impact project that implements the GAMLSS framework
in R. A potential research topic could be the odd Weibull family amending the GAMLSS
framework. Implementation of OW’s pdf (dOW), cdf (pOW), hazard (hOW) and quantile fun-
ction (qOW) in R is required. The gamlss.family structure needs to be adapted to add the
OW distribution and put in a function with the family information needed for fitting the
distribution, such as the header, the first and second derivatives used in estimation, and
initial values. Additionally, the effect of passing non-linear constraints to the RS() algo-
rithm should be investigated, as we did with maxlogLreg with the penalised log-likelihood
(equation (8-11)).

We have already explored these issues in part. Consider the following regression model:

yi ∼ OW (µi, σi, νi),
log(µi) = α0,

log(σi) = β0 + β1X1i,

log(νi) = γ0 + γ1X1i,

(9-2)

https://github.com/Jaimemosg/gamlss.extra
https://jaimemosg.github.io/EstimationTools/reference/set_optimizer.html
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where X1i is binary (balanced) covariate and the vector parameter is Θ = (α0 = 0.05, β0 =
−0.361, β1 = 1.460, γ0 = 0.694, γ1 = −1.61)⊤. Specifically, when X1i = 0, the hazard shape
is unimodal, whereas the behaviour increases when X1i = 1. This model does not successfully
converge with standard optimisation routines implemented in R, however gamlss() function
is able to find plausible estimators

library(gamlss)
con.out <-gamlss.control(n.cyc = 500, trace = FALSE)
con.in <- glim.control(cyc = 600)

set.seed(0404)
mu <- 0.05; beta0 <- -0.361; beta1 <- 1.460
gamma0 <- 0.694; gamma1 <- -1.61
n <- 1000
X1 <- c(rep(0, n/2), rep(1, n/2))
sigma <- exp(beta0 + beta1*X1)
nu <- exp(gamma0 + gamma1*X1)
y <- rOW(n, mu=mu, sigma=sigma, nu=nu)

OW_model <- gamlss(y˜1, sigma.fo=˜X1, nu.fo=˜X1,
control=con.out, i.control=con.in,
family=OW)

cat(paste0("mu hat:\n", coef(OW_model, what = "mu") |> exp()))
cat("sigma hat:\n")
coef(OW_model, what = "sigma")
cat("nu hat:\n")
coef(OW_model, what = "nu")

## mu hat:
## 0.049307351400222
## sigma hat:
## (Intercept) X1
## -0.347746 1.395705
## nu hat:
## (Intercept) X1
## 0.7333091 -1.5700118

In our experience, gamlss has a robust and effective two-step algorithm for computing ma-
ximum likelihood estimators. An in-depth discussion is out of the scope of this document,
visit the family script and the RelDists package vignette for further information.

https://github.com/ousuga/RelDists/blob/master/R/OW.R
https://ousuga.github.io/RelDists/articles/OW_distribution.html
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Finally, we can leverage our previous experience to provide some additional features to
gamlss. Some unique features from EstimationToos and maxlogLreg such as moments es-
timation, hazard function computation, and survival analysis residuals computation, could
be adapted for gamlss objects.

9.2.4. Estimation of detection functions

Population density estimation in distance sampling requires fitting a probability density
function denoted by f(y|θ), where y represents the perpendicular (or radial) distance from
a detected animal (or object) to a transect line (or point), and θ represents the vector
parameter indexing this family of probability density functions. The most popular approach
to estimate f(·), is based on a semi–parametric methodology proposed by Buckland (1992);
Buckland et al. (1993) using typical forms such as half-normal and hazard-rate functions
(see figure 9-1). The main idea is to find the maximum likelihood estimator for θ using a
parametric functional form combined with a series expansion.
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Figure 9-1: Usual detection functions used in distance framework.

Regarding the decreasing nature of detection functions, another interesting approach is to
propose detection functions based on survival functions from novel distributions currently
used in parametric survival analysis (Almalki and Nadarajah, 2014) and already implemented
in RelDists (Hernandez et al., 2023). Some exploration has been made by Alanzi et al. (2023),
however an official computational implementation would allow further investigation of the
statistical properties and numerical behaviour of these functions.
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9.3. Conclusion
We can say that our tool is far from perfect and is not the definitive solution to parameter
estimation problems for distributions. However, during the development process, we found
an opportunity to learn about special topics in maximum likelihood estimation, such as high-
precision arithmetic, and gained a better understanding of existing frameworks, especially
the generalised additive model for location, scale, and shape (GAMLSS).



Part V

Appendix



A. Appendix: Expected value as integral
of the survival function

”
There is a harmony in the universe, if you can only find
it.

— Ralph Waldo Emerson

(Philosopher)

Let’s prove that

∫ ∞

0
S(t)dt = E(T ),

where T is a positive random variable which follows a lifetime distribution.

Proof. This result has been proved regarding the Corollary 1 of James (2010). Consider
the definition of the expected value using the Riemann-Stieltjes integral

E(T ) =
∫ ∞

−∞
tdF (t) =

∫ ∞

0
tdF (t),

where F (·) is a cumulative density function. Let’s prove that

∫ ∞

0
tdF (t) =

∫ ∞

0
S(t)dt = E(T ).

Recall the formula for integration by parts of the Riemann-Stieltjes integral

∫ b

a
g(t)dα(t) +

∫ b

a
α(t)dg(t) = g(b)α(b) − g(a)α(a)

Clearing, we get
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∫ b

a
α(t)dg(t) = g(b)α(b) − g(a)α(a) −

∫ b

a
g(t)dα(t)

Regarding the expected value definition, we have g(t) = F (t), α(t) = t, a = 0, and F (t =
a) = 0 because F (·) is a cumulative density function. Hence

∀b > 0,
∫ b

0
tdF (t) = bF (b) −

∫ b

0
F (t)dt =

∫ b

0
[F (b) − F (t)]dt.

Since F (b) < 1 and 1 − F (t) ≥ 0, we have

∫ b

0
tdF (t) =

∫ b

0
[F (b) − F (t)]dt ≤

∫ ∞

0
[1 − F (t)]dt, ∀b > 0,

so

∫ ∞

0
tdF (t) = ĺım

b→∞

∫ b

0
tdF (t) ≤

∫ ∞

0
[1 − F (t)]dt.

On the other hand, let λ > 0. If b > λ, then

∫ b

0
[F (b) − F (t)]dt ≥

∫ λ

0
[F (b) − F (t)]dt

=
∫ λ

0
[F (b) − 1]dt +

∫ λ

0
[1 − F (t)]dt

= λ[F (b) − 1] +
∫ λ

0
[1 − F (t)]dt,

and therefore,

∫ ∞

0
tdF (t) = ĺım

b→∞

∫ b

0
tdF (t) = ĺım

b→∞

∫ b

0
[F (b) − F (t)]dt

≥
∫ λ

0
[1 − F (t)]dt + ĺım

b→∞
λ[F (b) − 1]

=
∫ λ

0
[1 − F (t)]dt.

Since this is true for all λ > 0, we have

∫ ∞

0
tdF (t) = ĺım

λ→∞

∫ λ

0
[1 − F (t)]dt =

∫ ∞

0
[1 − F (t)]dt,
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which is equivalent to the survival function. Finally

E(T ) =
∫ ∞

0
tdF (t) =

∫ ∞

0
S(t)dt,



B. Appendix: Derivative of the TTT
transform

”
The ability to simplify means to eliminate the unneces-
sary so that the necessary may speak.

— Hans Hofmann

(Expressionist painter)

Let’s show that

d

du
HF −1(u) = 1

h(t) .

Proof. Firstly, let’s compute the derivative of the TTT transform,

d

du
HF −1(u) = d

du

∫ F −1(u=1)

0
S(t)dt

=
[

d

du
F −1(u)

]
︸ ︷︷ ︸

Member A

[
S(F −1(u = 1))

]
︸ ︷︷ ︸

Member B

−
�

0(
d

du
0
)

S(0) +
∫ F −1(u=1)

0

*0
d

du
S(t)dt

The second and third terms have derivatives equals to zero. Let’s develop in more detail the
first one.

Member A Let’s say that

t = F −1(u)

so,
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F (t) = u and dt

du
= d

du
F −1(u) (B-1)

then, regarding B-1

dt

du
= 1

/
du

dt
= 1

/
d

dt
F (t)

Recall from the definition of the cdf that

f(t) = d

dt
F (t), (B-2)

whence, B-1 can be rewritten as follows

dt

du
= 1

f(t) . (B-3)

Therefore,

d

du
F −1(u = 1) = 1

f(F −1(u)) .

Member B The expression can be rewritten as follows

S(F −1(u = 1)) = 1 − F (F −1(u = 1)) = 1 − u.

Final result Combining the two previous results and evaluating the cdf in any time yields
the following expression

d

du
HF −1(u) = 1 − u

f(F −1(u))

∣∣∣∣∣
u=F (t)

= S(t)
f(t) = 1

h(t) .



C. Appendix: Scaled TTT transform for
censored samples

”
God is in the details.

— Ludwig Mies van der Rohe

(Architect and furniture designer)

Recall the definition of the TTT transform

ϕn

(
i

n

)
= HF −1(i/n)

HF −1(1) . (C-1)

Using the Kaplan-Meier estimator (KME), the TTT transform could be expressed as follows

HF −1

(
i

n

)
=
∫ F −1(i/n)

0
S(t)dt =

∫ Ti

0

 ∏
k:Tk≤T

(
1 − dk

nk

) dt (C-2)

where dk are the number of events and nk the number of units in risk up to time k. Since
KME is a step function, the integral can be written as a Riemann summation,

HF −1

(
i

n

)
=

i∑
j=1

 j∏
k=1

(
1 − dk

nk

)
(Tj − Tj−1)

 (C-3)

Therefore, when i = n,

HF −1(1) =
n∑

j=1

 j∏
k=1

(
1 − dk

nk

)
(Tj − Tj−1)

 (C-4)

Then, the equation C-1 leads to
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ϕn

(
i

n

)
=

i∑
j=1

[
j∏

k=1

(
1 − dk

nk

)
(Tj − Tj−1)

]
n∑

j=1

[
j∏

k=1

(
1 − dk

nk

)
(Tj − Tj−1)

] (C-5)



D. Appendix: odd Weibull parametric
sub-spaces and TTT shapes

”
A picture is worth a thousand words.

— Popular adage
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(a) Bathtub parametric subspace.
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(b) Some TTT plots for values indicated in (a).

Figure D-1: Parametric sub-spaces and TTT plots corresponding to data with bathtub
hazard function shapes. TTT plots are computed with simulated OW variables
(sample size of 2000).
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(a) Unimodal (negative) parametric subspace.
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Figure D-2: Parametric sub-spaces (quadrant III) and TTT plots corresponding to data
with unimodal hazard function shapes. TTT plots are computed with simula-
ted OW variables (sample size of 2000).
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(b) Some TTT plots for values indicated in (a).

Figure D-3: Parametric sub-spaces (quadrant I) and TTT plots corresponding to data with
decreasing hazard function shapes. TTT plots are computed with simulated
OW variables (sample size of 2000).
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(a) Decreasing (negative) parametric subspace.
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(b) Some TTT plots for values indicated in (a).

Figure D-4: Parametric sub-spaces (quadrant III) and TTT plots corresponding to data
with decreasing hazard function shapes. TTT plots are computed with simu-
lated OW variables (sample size of 2000).
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(a) Decreasing (postive) parametric subspace.
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(b) Some TTT plots for values indicated in (a).

Figure D-5: Parametric sub-spaces (quadrant I, σ < 1) and TTT plots corresponding to
data with decreasing hazard function shapes. TTT plots are computed with
simulated OW variables (sample size of 2000).



E. Appendix: odd Weibull simulation
study
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Figure E-1: Mean value for estimated parameters. The dashed line indicates the true values
of the parameters.
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Figure E-2: Median value for estimated parameters. The dashed line indicates the true
values of the parameters.
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Figure E-3: Bias for estimated parameters. The dashed line indicates Bias = 0.
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