Clase 12: Estimacién puntual, conceptos basicos y propiedades.
Estimadores Insesgados y de minima varianza

Universidad Nacional de Colombia - Sede Medellin
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llustracion
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Tipos de estimacion

» Puntual.
» Por intervalo.
Tarea: ver el siguiente video https://youtu.be/cMggG_1BC2U?si=hCKzd64nB6F_qg4Fy
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https://youtu.be/cMqgG_lBC2U?si=hCKzd64nB6F_q4Fy

llustracion

BAJA EXACTITUD
BAJA PRECISION

ALTA EXACTITUD
BAJA PRECISION

BAJA EXACTITUD
ALTA PRECISION

ALTA EXACTITUD
ALTA PRECISIGN

4/28



Estimacion Puntual

Suponga que se desea estimar un parametro (u, 62, p) de interés de una sola poblacion
con base en una muestra aleatoria de tamafno n de esta poblacion.

Si X1, -+, X, es una m.a de dicha poblacién, entonces cada X; es una v.a. y cualquier
estadistico deducido a partir de esta muestra sera también una v.a.

Asi los estimadores X, S? y p seran variables aleatorias.
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Estimacion puntual

» El objetivo de la estimacion puntual es emplear una m.a. para calcular un nimero que
sea una buena presuncion del parametro de interés 6.

» El estimador puntual se denota como 6.
» El nimero resultante se llama estimacion puntual.
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Estimacion puntual

Sea X1, ---, X, una muestra aleatoria de una poblacién con media u y varianza 2.
Tres estimadores puntuales para u son:

min + max

X, X:Mediana, i = >

Cuatro estimadores puntuales para 62 son:
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Si 6 es una estimador de 0, a medida que el tamafo de la muestra crece, se espera que 6
esté muy cerca de 6.

Los valores de 6 cambian de muestra a muestra; asi,

6 =0 + Error Error de estimacion .
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Insesgamiento de un estimador
Se dice que un estimador puntual 6de 6 (parametro poblacional) es insesgado si

E [é} —9.
En caso contrario diremos que el estimador es sesgado. Si fes sesgado, el sesgo se
define como:
B=E [e} —9.
/ ! /"\

|

|

|

1 ;
E16,1=0 E[0,17 0
B

Ver el video: https://youtu.be/KQwlWEnlJus?si=4fjpLYy5eT21-uN8
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https://youtu.be/KQw1WEn1Jus?si=4fjpLYy5eT21-uN8

Ejemplo de un estimador insesgado y uno sesgado

Suponga que X ~ bin(n, p) con p desconocida. Considere los siguientes estimadores
para p:

L X L X+
P n po = N1
¢ Cual de los dos estimadores es insesgado?

Solucion:

Elprl = || = £ = Smo—p

E[ﬁz]:E[XH} _nl

n+1
D1 es insesgado y p» es sesgado para p.
~ 7 A 1 -
El sesgo de p, esta dado por: B= E[p] —p = n+7'

np+ 1
EX+1]=
1 X +1] n-+1
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Ejemplo de dos estimadores insesgados

Sea Xj, -+, X, una muestra aleatoria de una distribucion con media u y varianza 62,

_ n 1 n _
entonces X = 15 i; XiyS®= p—l i; (Xi— X)2 son estimadores insesgados para i y 62
respectivamente.

Demostracion
Debemos calcular E(X) y E(S?).

n

1
S X

1 1< nu
== ) EX]==-) u=—=u

n ; n ,; n
Antes de calcular £(S?) necesitamos lo siguiente:

¥ (6~

i=1

n
()(12_2)(/)'(+)'(2): X —2nX?+nX? = ZX2
1

1 i=

M=
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Asi

E[32] _ 1 £ zn"XI?_n)‘(z :; (zn" E[X,-Z] —nE[)_(2]> .
=1 S n—1\i3
Como 2
E[X?] = Var[X]+1* =0 +1° y E[X?] = —+4°
Entonces:
E[s?] = ,71?1 [:1 (62 +18) - n (CIY:JFMz)

(n—1)o? _ &2
n—A1 '

1
=— (no® + i — o® — ) =
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En conclusién, los estimadores X y S? son insesgados para la media Uy varianza 62 de
una poblacién cualquiera.
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Estimador Insesgado de Minima Varianza (MVUE)

Entre dos estimadores insesgados para 0, se prefiere aquel con menor varianza.

N

ICA

Del gréafico se deduce que ambos estimadores para 0 son insesgados. También se
evidencia que Var [@1} < Var [62} , por lo tanto §1 es mejor estimador de 6 que ég.

De todos los estimadores insesgados para un parametro 6, el de menor varianza es
llamado Estimador Insesgado de Minima Varianza (MVUE).
Ver el video: https://youtu.be/jd9Mcrt7SiE?si=0zXjclORtdFFKJcs
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https://youtu.be/jd9Mcrt7SiE?si=0zXjclORtdFFKJcs

Ejemplo de mejor estimador

Sea Xi, ..., X, una muestra aleatoria de una poblacién con media u y varianza 62
conocida.
Sean
X1+ Xo + X, N 2X1 — Xp + 2X4 + X0
b= ——F0—""1Y U= .
3 4
¢, Cual es mejor estimador? ¢y 0 fi2?
Solucién:

Calculemos los valores esperados de los dos estimadores.

o1 +u+
Elin] = 5 EDG + X + X = E2—F =
1

L "
Elfe] = E[2X — Xo +2X + Xl = ;(2u —p+ 2utp)= - =
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Ahora vamos a calcular sus varianzas.

1

1
Var [in] = 3 VIXi + Xo + Xo] = 5(62 + 6® + o°) = 6°/3

. 1
Val’[,llg] = — Var[2X1 — Xn + 2X4 + X10]

16
= l(462 + 0° + 40° + 0°) = .
16 8

Como Var[fn] < Var|[fiz], podemos concluir que fi; es mejor estimador que fip para
estimar a u.
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Propiedad importante

Teorema

Sea X1, - -+, X, una muestra aleatoria de una N(u, 62), entonces X es el MVUE para uy
1 n .

S? = — Y. (X;— X)? es el MVUE para 62.
—1i=1
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Error estandar o standard error (se)

Definicion
Si 0 es una estimador de 0, el Error Estandar de 0 seré su desviacion estandar, es decir,

A

se(0) =oy =/ Var [@}

Si se(é) depende de algun otro pardmetro desconocido, éste debe ser estimado
previamente y asi, se obtiene una estimacion del error estandar de 0.
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Error estandar o standard error (se)

Al error estandar de 0 se le suele denotar como Gy o] Sé, cuando se deba realizar
previamente alguna estimacion.
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Ejemplo de error estandar de X

¢,Cudl es el error estandar para el estimador X de la media de una poblacién con media iy
varianza ¢2?

Solucion:

En la clase anterior vimos que para una muestra aleatoria de una poblacién con media u y

varianza 62:

1 n 1 n
R YRl M o
2

1 n
=#;wm=:- @

— 1
Var [X] = Var [n

I|M:

- - c
Asi, el error estdndar de X, estd dado por 63 = Sy =4/ Var [X] = %

Si ¢ es desconocida, ella se puede estimar como la desviacion estandar muestral S.
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Ejemplo de error estandar de p

. X
Suponga que X ~ bin(n, p), con p desconocido. Un estimador parapes p = e

¢, Cudl es el error estandar de p.
Solucién:

Var [p] = Var [
Como p se estima usando p =

A

X (141X
Op = Sﬁ: Var(f)): Lﬁ)
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Error cuadratico medio

Suponga ahora que se desea establecer cual de dos estimadores de un parametro 0 es
mejor:
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De la figura anterior se observa que é1 es insesgado para 0 pero ég no. Sin embargo se
observa que V {(321 <V {61] ¢ Que hacer?

Una medida mas general para comparar estimadores de 0 es el Error Cuadratico Medio
(ECM), el cual se define como:

ECM(®) = Var [é} + B2,

Entre dos estimadores elegimos aquel con menor ECM.
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Ejemplo

Sea Xj, -+, X, una muestra aleatoria de una distribucién con media 6 = 2 y varianza
62 = 1. Considere dos estimadores de 0, dados por:

4X1+ Xy A X1+ Xo+3X,
=TTy G =T

O
5 10

¢ Cual es mejor estimador de 6?
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Solucioén:
Paso 1: calculemos los valores esperados de cada estimador.

6.

o] — | 200 _

- ] _ % (4D + EDx]} = 22
E[%}:E[M+JQ+3xﬂ::HX4+EMH+3EMH::9+G+39:1

-90.
10 10 10 2

Asi, §1 es insesgado y ég es sesgado. El sesgo de §1 es cero y el sesgo de ég es
&25@4—9:—3
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Paso 2: calculemos las varianzas.

4+ X,

Var [éd = Var[ 5

} = é {16 Var[X;] + Var[X,]}

1 17
= _— {166°+06°} = —c°.
25{ + } 25
Xi+Xo+3X,

Var [ég] = Var [ 0

] = 1% {Var[Xi] + Var[Xz] + 9 Var[X,]}

L1 1
Var {62] = mﬁz .

Observe que Var [ég} < Var [91].
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Paso 3: calculemos el ECM:

. . 17 17
ECM [6 } = Var [6} B?=—0°+0°= —¢?
! B =550+ 25
N N 11 0\2 11 92
ECM[G}:V [e} B=_o?t(—2) = 6?4 —.
2| =Var |92 +5 = 15,0 | 75 100° T4

Como 62 = 1y B =2 los ECM serian ECM 81| = 37 y EOM [8,| = 15 +1.
Al comparar los ECM vemos que ECM [91] < ECM [ég], se puede concluir que (§1 es

mejor estimador que ég.
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Ejercicio

Sea Xi, ---, X, una muestra aleatoria de una distribucién Poisson con parametro A
desconocido. Considere dos estimadores de A, dados por:
1 n

Y X1
i=1

A =
! n—1

- A1
ZX/‘ y Ap=-—
i=1 n

a. Determine si ambos estimadores son insesgados para A.
b. ¢Cual de los dos estimadores para A tiene menor varianza®?.

c. Sin=25y A =4, ;ctal de los dos estimadores prefiere?.
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