These functions define the density, distribution function, quantile function and random generation for the Beta Rectangular distribution with parameters \(\mu\), \(\sigma\) and \(\nu\).
dBER(x, mu, sigma, nu, log = FALSE)
pBER(q, mu, sigma, nu, lower.tail = TRUE, log.p = FALSE)
qBER(p, mu, sigma, nu, lower.tail = TRUE, log.p = FALSE)
rBER(n, mu, sigma, nu)
vector of (non-negative integer) quantiles.
vector of the mu parameter.
vector of the sigma parameter.
vector of the nu parameter.
logical; if TRUE, probabilities p are given as log(p).
logical; if TRUE (default), probabilities are \(P[X <= x]\), otherwise, \(P[X > x]\).
vector of probabilities.
number of random values to return.
The Beta Rectangular distribution with parameters \(\mu\), \(\sigma\) and \(\nu\) has a support in \((0, 1)\) and density given by
\(f(x| \mu, \sigma, \nu) = \nu + (1 - \nu) b(x| \mu, \sigma)\)
for \(0 < x < 1\), \(0 < \mu < 1\), \(\sigma > 0\) and \(0 < \nu < 1\).
The function \(b(.)\) corresponds to the traditional beta distribution
that can be computed by dbeta(x, shape1=mu*sigma, shape2=(1-mu)*sigma)
.
Bayes, C. L., Bazán, J. L., & García, C. (2012). A new robust regression model for proportions. Bayesian Analysis, 7(4), 841-866.
BER.
# Example density function of the Beta Rectangular distribution
# Example 1
curve(dBER(x, mu=0.5, sigma=10, nu=0),
from=0, to=1, col="green", las=1, ylab="f(x)")
curve(dBER(x, mu=0.5, sigma=10, nu=0.2),
add=TRUE, col= "blue1")
curve(dBER(x, mu=0.5, sigma=10, nu=0.4),
add=TRUE, col="yellow")
curve(dBER(x, mu=0.5, sigma=10, nu=0.6),
add=TRUE, col="red")
legend("topleft", col=c("green", "blue1", "yellow", "red"), lty=1, bty="n",
legend=c("mu=0.5, sigma=10, nu=0",
"mu=0.5, sigma=10, nu=0.2",
"mu=0.5, sigma=10, nu=0.4",
"mu=0.5, sigma=10, nu=0.6"))
# Example 2
curve(dBER(x, mu=0.3, sigma=10, nu=0),
from=0, to=1, col="green", las=1, ylab="f(x)")
curve(dBER(x, mu=0.3, sigma=10, nu=0.2),
add=TRUE, col= "blue1")
curve(dBER(x, mu=0.3, sigma=10, nu=0.4),
add=TRUE, col="yellow")
curve(dBER(x, mu=0.3, sigma=10, nu=0.6),
add=TRUE, col="red")
legend("topright", col=c("green", "blue1", "yellow", "red"), lty=1, bty="n",
legend=c("mu=0.5, sigma=10, nu=0",
"mu=0.5, sigma=10, nu=0.2",
"mu=0.5, sigma=10, nu=0.4",
"mu=0.5, sigma=10, nu=0.6"))
# Cumulative Distribution Function of the Rectangular Beta Distribution
# Example 3
curve(pBER(x, mu=0.5, sigma=10, nu=0),
from=0, to=1, col="green", las=1, ylab="f(x)")
curve(pBER(x, mu=0.5, sigma=10, nu=0.2),
add=TRUE, col= "blue1")
curve(pBER(x, mu=0.5, sigma=10, nu=0.4),
add=TRUE, col="yellow")
curve(pBER(x, mu=0.5, sigma=10, nu=0.6),
add=TRUE, col="red")
legend("topleft", col=c("green", "blue1", "yellow", "red"), lty=1, bty="n",
legend=c("mu=0.5, sigma=10, nu=0",
"mu=0.5, sigma=10, nu=0.2",
"mu=0.5, sigma=10, nu=0.4",
"mu=0.5, sigma=10, nu=0.6"))
# Example 4
curve(pBER(x, mu=0.3, sigma=10, nu=0),
from=0, to=1, col="green", las=1, ylab="f(x)")
curve(pBER(x, mu=0.3, sigma=10, nu=0.2),
add=TRUE, col= "blue1")
curve(pBER(x, mu=0.3, sigma=10, nu=0.4),
add=TRUE, col="yellow")
curve(pBER(x, mu=0.3, sigma=10, nu=0.6),
add=TRUE, col="red")
legend("topleft", col=c("green", "blue1", "yellow", "red"), lty=1, bty="n",
legend=c("mu=0.5, sigma=10, nu=0",
"mu=0.5, sigma=10, nu=0.2",
"mu=0.5, sigma=10, nu=0.4",
"mu=0.5, sigma=10, nu=0.6"))
# Quantile Function of the Rectangular Beta Distribution
# Example 5
curve(qBER(x, mu=0.5, sigma=10, nu=0),
from=0, to=1, col="green", las=1, ylab="f(x)")
curve(qBER(x, mu=0.5, sigma=10, nu=0.2),
add=TRUE, col= "blue1")
curve(qBER(x, mu=0.5, sigma=10, nu=0.4),
add=TRUE, col="yellow")
curve(qBER(x, mu=0.5, sigma=10, nu=0.6),
add=TRUE, col="red")
legend("topleft", col=c("green", "blue1", "yellow", "red"), lty=1, bty="n",
legend=c("mu=0.5, sigma=10, nu=0",
"mu=0.5, sigma=10, nu=0.2",
"mu=0.5, sigma=10, nu=0.4",
"mu=0.5, sigma=10, nu=0.6"))
# Example 6
curve(qBER(x, mu=0.3, sigma=10, nu=0),
from=0, to=1, col="green", las=1, ylab="f(x)")
curve(qBER(x, mu=0.3, sigma=10, nu=0.2),
add=TRUE, col= "blue1")
curve(qBER(x, mu=0.3, sigma=10, nu=0.4),
add=TRUE, col="yellow")
curve(qBER(x, mu=0.3, sigma=10, nu=0.6),
add=TRUE, col="red")
legend("topright", col=c("green", "blue1", "yellow", "red"), lty=1, bty="n",
legend=c("mu=0.5, sigma=10, nu=0",
"mu=0.5, sigma=10, nu=0.2",
"mu=0.5, sigma=10, nu=0.4",
"mu=0.5, sigma=10, nu=0.6"))
# Random Deviations Function of the Rectangular Beta Distribution
x <- rBER(n= 10000, mu=0.5, sigma=10, nu=0.1)
hist(x, freq=FALSE)
curve(dBER(x, mu=0.5, sigma=10, nu=0.1),
col="tomato", add=TRUE, from=0, to=1)