Skip to contents

Density, distribution function, quantile function, random generation and hazard function for the Birnbaum-Saunders distribution with parameters mu and sigma.

Usage

dBS(x, mu = 1, sigma = 1, log = FALSE)

pBS(q, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE)

qBS(p, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE)

rBS(n, mu = 1, sigma = 1)

hBS(x, mu, sigma)

Arguments

x, q

vector of quantiles.

mu

parameter.

sigma

parameter.

log, log.p

logical; if TRUE, probabilities p are given as log(p).

lower.tail

logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x].

p

vector of probabilities.

n

number of observations.

Value

dBS gives the density, pBS gives the distribution function, qBS gives the quantile function, rBS generates random deviates and hBS gives the hazard function.

Details

The Birnbaum-Saunders with parameters mu and sigma has density given by

\(f(x) = \frac{x^{-3/2}(x+\mu)}{2\sigma\sqrt{2\pi\mu}} \exp\left(\frac{-1}{2\sigma^2}(\frac{x}{\mu}+\frac{\mu}{x}-2)\right)\)

for \(x>0\), \(\mu>0\) and \(\sigma>0\). In this parameterization \(\mu\) is the median of \(X\), \(E(X)=\mu(1+\sigma^2/2)\) and \(Var(X)=(\mu\sigma)^2(1+5\sigma^2/4)\). The functions proposed here corresponds to the functions created by Roquim et al. (2021) with minor modifications to obtain correct log-likelihoods and random samples.

References

Roquim, F. V., Ramires, T. G., Nakamura, L. R., Righetto, A. J., Lima, R. R., & Gomes, R. A. (2021). Building flexible regression models: including the Birnbaum-Saunders distribution in the gamlss package. Semina: Ciências Exatas e Tecnológicas, 42(2), 163-168.

Examples

#Example 1
#Plotting the mass function for different parameter values
curve(dBS(x, mu=0.5, sigma=0.5), 
      from=0.001, to=5,
      ylim=c(0, 2), 
      col="royalblue1", lwd=2, 
      main="Density function",
      xlab="x", ylab="f(x)")
curve(dBS(x, mu=1, sigma=0.5),
      col="tomato", 
      lwd=2,
      add=TRUE)
curve(dBS(x, mu=1.5, sigma=0.5),
      col="seagreen",
      lwd=2,
      add=TRUE)
legend("topright", legend=c("mu=0.5, sigma=0.5", 
                            "mu=1.0, sigma=0.5",
                            "mu=1.5, sigma=0.5"),
       col=c("royalblue1", "tomato", "seagreen"), lwd=2, cex=0.6)



curve(dBS(x, mu=0.5, sigma=1), 
      from=0.001, to=5,
      ylim=c(0, 1.5), 
      col="royalblue1", lwd=2, 
      main="Density function",
      xlab="x", ylab="f(x)")
curve(dBS(x, mu=1, sigma=1),
      col="tomato", 
      lwd=2,
      add=TRUE)
curve(dBS(x, mu=1.5, sigma=1),
      col="seagreen",
      lwd=2,
      add=TRUE)
legend("topright", legend=c("mu=0.5, sigma=1", 
                            "mu=1.0, sigma=1",
                            "mu=1.5, sigma=1"),
       col=c("royalblue1", "tomato", "seagreen"), lwd=2, cex=0.6)



curve(dBS(x, mu=0.5, sigma=1.5), 
      from=0.001, to=8,
      ylim=c(0, 2), 
      col="royalblue1", lwd=2, 
      main="Density function",
      xlab="x", ylab="f(x)")
curve(dBS(x, mu=1, sigma=1.5),
      col="tomato", 
      lwd=2,
      add=TRUE)
curve(dBS(x, mu=1.5, sigma=1.5),
      col="seagreen",
      lwd=2,
      add=TRUE)
legend("topright", legend=c("mu=0.5, sigma=1.5", 
                            "mu=1.0, sigma=1.5",
                            "mu=1.5, sigma=1.5"),
       col=c("royalblue1", "tomato", "seagreen"), lwd=2, cex=0.6)


# Example 2
# Checking if the cumulative curves converge to 1
curve(pBS(x, mu=0.5, sigma=0.5), 
      from=0.001, to=5,
      ylim=c(0, 1), 
      col="royalblue1", lwd=2, 
      main="Cumulative Distribution Function",
      xlab="x", ylab="f(x)")
curve(pBS(x, mu=1, sigma=0.5),
      col="tomato", 
      lwd=2,
      add=TRUE)
curve(pBS(x, mu=1.5, sigma=0.5),
      col="seagreen",
      lwd=2,
      add=TRUE)
legend("bottomright", legend=c("mu=0.5, sigma=0.5", 
                               "mu=1.0, sigma=0.5",
                               "mu=1.5, sigma=0.5"),
       col=c("royalblue1", "tomato", "seagreen"), lwd=2, cex=0.5)

curve(pBS(x, mu=0.5, sigma=0.5, lower.tail=FALSE), 
      from=0.001, to=5,
      ylim=c(0, 1), 
      col="royalblue1", lwd=2, 
      main="Cumulative Distribution Function",
      xlab="x", ylab="f(x)")
curve(pBS(x, mu=1, sigma=0.5, lower.tail=FALSE),
      col="tomato", 
      lwd=2,
      add=TRUE)
curve(pBS(x, mu=1.5, sigma=0.5, lower.tail=FALSE),
      col="seagreen",
      lwd=2,
      add=TRUE)
legend("topright", legend=c("mu=0.5, sigma=0.5", 
                            "mu=1.0, sigma=0.5",
                            "mu=1.5, sigma=0.5"),
       col=c("royalblue1", "tomato", "seagreen"), lwd=2, cex=0.5)


#example 3
## The quantile function
p <- seq(from=0, to=0.999, length.out=100)
plot(x=qBS(p, mu=2.3, sigma=1.7), y=p, xlab="Quantile",
     las=1, ylab="Probability", main="Quantile function ")
curve(pBS(x, mu=2.3, sigma=1.7), 
      from=0, add=TRUE, col="tomato", lwd=2.5)


#some values
p <- c(0.25, 0.5, 0.75)
quantile <- qBS(p=p, mu=2.3, sigma=1.7) 
for(i in quantile){
  print(integrate(dBS, lower=0, upper=i, mu=2.3, sigma=1.7))
}
#> 0.25 with absolute error < 2.3e-08
#> 0.5 with absolute error < 2.2e-09
#> 0.75 with absolute error < 6.1e-06

#example 4
## The random function
x <- rBS(n=10000, mu=20, sigma=0.5)
hist(x, freq=FALSE)
curve(dBS(x, mu=20, sigma=0.5), from=0, to=100, 
      add=TRUE, col="tomato", lwd=2)


#example 5
## The Hazard function
curve(hBS(x, mu=20, sigma=0.5), from=0.001, to=100,
      col="tomato", ylab="Hazard function", las=1)