Skip to contents

The Weibull Poisson family

Usage

WP(mu.link = "log", sigma.link = "log", nu.link = "log")

Arguments

defines the mu.link, with "log" link as the default for the mu parameter.

defines the sigma.link, with "log" link as the default for the sigma.

defines the nu.link, with "log" link as the default for the nu parameter.

Value

Returns a gamlss.family object which can be used to fit a WP distribution in the gamlss() function.

Details

The Weibull Poisson distribution with parameters mu, sigma and nu has density given by

\(f(x) = \frac{\mu \sigma \nu e^{-\nu}} {1-e^{-\nu}} x^{\mu-1} \exp({-\sigma x^{\mu}+\nu \exp({-\sigma} x^{\mu}) }),\)

for \(x > 0\).

References

Lu, Wanbo, and Daimin Shi. "A new compounding life distribution: the Weibull–Poisson distribution." Journal of applied statistics 39.1 (2012): 21-38.

See also

Author

Amylkar Urrea Montoya, amylkar.urrea@udea.edu.co

Examples

# Example 1
# Generating some random values with
# known mu, sigma and nu
y <- rWP(n=3000, mu=1.5, sigma=0.5, nu=0.5)

# Fitting the model
require(gamlss)

mod1 <- gamlss(y~1, sigma.fo=~1, nu.fo=~1, family=WP,
              control=gamlss.control(n.cyc=5000, trace=FALSE))

# Extracting the fitted values for mu, sigma and nu
# using the inverse link function
exp(coef(mod1, what="mu"))
#> (Intercept) 
#>    1.522753 
exp(coef(mod1, what="sigma"))
#> (Intercept) 
#>   0.4762702 
exp(coef(mod1, what="nu"))
#> (Intercept) 
#>   0.5897392 

# Example 2
# Generating random values for a regression model

# A function to simulate a data set with Y ~ WP
gendat <- function(n) {
  x1 <- runif(n)
  x2 <- runif(n)
  mu <- exp(-1.3 + 3.1 * x1)
  sigma <- exp(0.9 - 3.2 * x2)
  nu <- 0.5
  y <- rWP(n=n, mu, sigma, nu)
  data.frame(y=y, x1=x1, x2)
}

set.seed(1234)
dat <- gendat(n=100)

# Fitting the model
mod2 <- NULL
mod2 <- gamlss(y~x1, sigma.fo=~x2, nu.fo=~1, 
               family=WP, data=dat,
              control=gamlss.control(n.cyc=5000, trace=FALSE))

coef(mod2, what="mu")
#> (Intercept)          x1 
#>   -1.125264    3.013640 
coef(mod2, what="sigma")
#> (Intercept)          x2 
#>   0.9625944  -3.7192040 
exp(coef(mod2, what="nu"))
#> (Intercept) 
#>   0.9819208