The Quasi XGamma Poisson family
Value
Returns a gamlss.family object which can be used to fit a QXGP distribution in the gamlss()
function.
Details
The Quasi XGamma Poisson distribution with parameters mu
,
sigma
and nu
has density given by
\(f(x)= K(\mu, \sigma, \nu)(\frac {\sigma^{2} x^{2}}{2} + \mu) exp(\frac{\nu exp(-\sigma x)(1 + \mu + \sigma x + \frac {\sigma^{2}x^{2}}{2})}{1+\mu} - \sigma x),\)
for \(x > 0\), \(\mu> 0\), \(\sigma> 0\), \(\nu> 1\).
where
\(K(\mu, \sigma, \nu) = \frac{\nu \sigma}{(exp(\nu)-1)(1+\mu)}\)
References
Sen, S., Korkmaz, M. Ç., & Yousof, H. M. (2018). The quasi XGamma-Poisson distribution: properties and application. Istatistik Journal of The Turkish Statistical Association, 11(3), 65-76.
Author
Amylkar Urrea Montoya, amylkar.urrea@udea.edu.co
Examples
# Example 1
# Generating some random values with
# known mu, sigma and nu
y <- rQXGP(n=200, mu=4, sigma=2, nu=3)
# Fitting the model
require(gamlss)
mod <- gamlss(y~1, sigma.fo=~1, nu.fo=~1, family='QXGP',
control=gamlss.control(n.cyc=5000, trace=FALSE))
# Extracting the fitted values for mu, sigma and nu
# using the inverse link function
exp(coef(mod, what='mu'))
#> (Intercept)
#> 421588.8
exp(coef(mod, what='sigma'))
#> (Intercept)
#> 1.863351
exp(coef(mod, what='nu'))
#> (Intercept)
#> 2.281823
# Example 2
# Generating random values under some model
n <- 2000
x1 <- runif(n, min=0.4, max=0.6)
x2 <- runif(n, min=0.4, max=0.6)
mu <- exp(-2.19 + 3 * x1)
sigma <- exp(1 - 2 * x2)
nu <- 1
x <- rQXGP(n=n, mu, sigma, nu)
mod <- gamlss(x~x1, sigma.fo=~x2, nu.fo=~1, family=QXGP,
control=gamlss.control(n.cyc=5000, trace=FALSE))
#> Error in glim.fit(f = nu.object, X = nu.X, y = y, w = w, fv = nu, os = nu.offset, step = nu.step, control = i.control, gd.tol = gd.tol, auto = autostep): NA's in the working vector or weights for parameter nu
coef(mod, what="mu")
#> (Intercept)
#> 12.95179
coef(mod, what="sigma")
#> (Intercept)
#> 0.6223765
exp(coef(mod, what="nu"))
#> (Intercept)
#> 2.281823