Skip to contents

The Quasi XGamma Poisson family

Usage

QXGP(mu.link = "log", sigma.link = "log", nu.link = "log")

Arguments

defines the mu.link, with "log" link as the default for the mu parameter.

defines the sigma.link, with "log" link as the default for the sigma.

defines the nu.link, with "log" link as the default for the nu parameter.

Value

Returns a gamlss.family object which can be used to fit a QXGP distribution in the gamlss() function.

Details

The Quasi XGamma Poisson distribution with parameters mu, sigma and nu has density given by

\(f(x)= K(\mu, \sigma, \nu)(\frac {\sigma^{2} x^{2}}{2} + \mu) exp(\frac{\nu exp(-\sigma x)(1 + \mu + \sigma x + \frac {\sigma^{2}x^{2}}{2})}{1+\mu} - \sigma x),\)

for \(x > 0\), \(\mu> 0\), \(\sigma> 0\), \(\nu> 1\).

where

\(K(\mu, \sigma, \nu) = \frac{\nu \sigma}{(exp(\nu)-1)(1+\mu)}\)

References

Sen, S., Korkmaz, M. Ç., & Yousof, H. M. (2018). The quasi XGamma-Poisson distribution: properties and application. Istatistik Journal of The Turkish Statistical Association, 11(3), 65-76.

See also

Author

Amylkar Urrea Montoya, amylkar.urrea@udea.edu.co

Examples

# Example 1
# Generating some random values with
# known mu, sigma and nu
y <- rQXGP(n=200, mu=4, sigma=2, nu=3)

# Fitting the model
require(gamlss)

mod <- gamlss(y~1, sigma.fo=~1, nu.fo=~1, family='QXGP',
              control=gamlss.control(n.cyc=5000, trace=FALSE))
#> Error in gamlss(y ~ 1, sigma.fo = ~1, nu.fo = ~1, family = "QXGP", control = gamlss.control(n.cyc = 5000,     trace = FALSE)): response variable out of range

# Extracting the fitted values for mu, sigma and nu
# using the inverse link function
exp(coef(mod, what='mu'))
#> Error: object 'mod' not found
exp(coef(mod, what='sigma'))
#> Error: object 'mod' not found
exp(coef(mod, what='nu'))
#> Error: object 'mod' not found

# Example 2
# Generating random values under some model
n <- 2000
x1 <- runif(n, min=0.4, max=0.6)
x2 <- runif(n, min=0.4, max=0.6)
mu <- exp(-2.19 + 3 * x1)
sigma <- exp(1 - 2 * x2)
nu <- 1
x <- rQXGP(n=n, mu, sigma, nu)

mod <- gamlss(x~x1, sigma.fo=~x2, nu.fo=~1, family=QXGP,
              control=gamlss.control(n.cyc=5000, trace=FALSE))

coef(mod, what="mu")
#> (Intercept)          x1 
#>   -1.553292    3.344201 
coef(mod, what="sigma")
#> (Intercept)          x2 
#>   0.9028154  -1.6545796 
exp(coef(mod, what="nu"))
#>  (Intercept) 
#> 2.220444e-16