Skip to contents

The Quasi XGamma Poisson family

Usage

QXGP(mu.link = "log", sigma.link = "log", nu.link = "log")

Arguments

defines the mu.link, with "log" link as the default for the mu parameter.

defines the sigma.link, with "log" link as the default for the sigma.

defines the nu.link, with "log" link as the default for the nu parameter.

Value

Returns a gamlss.family object which can be used to fit a QXGP distribution in the gamlss() function.

Details

The Quasi XGamma Poisson distribution with parameters mu, sigma and nu has density given by

\(f(x)= K(\mu, \sigma, \nu)(\frac {\sigma^{2} x^{2}}{2} + \mu) exp(\frac{\nu exp(-\sigma x)(1 + \mu + \sigma x + \frac {\sigma^{2}x^{2}}{2})}{1+\mu} - \sigma x),\)

for \(x > 0\), \(\mu> 0\), \(\sigma> 0\), \(\nu> 1\).

where

\(K(\mu, \sigma, \nu) = \frac{\nu \sigma}{(exp(\nu)-1)(1+\mu)}\)

References

Sen, S., Korkmaz, M. Ç., & Yousof, H. M. (2018). The quasi XGamma-Poisson distribution: properties and application. Istatistik Journal of The Turkish Statistical Association, 11(3), 65-76.

See also

Author

Amylkar Urrea Montoya, amylkar.urrea@udea.edu.co

Examples

# Example 1
# Generating some random values with
# known mu, sigma and nu
y <- rQXGP(n=200, mu=4, sigma=2, nu=3)

# Fitting the model
require(gamlss)

mod <- gamlss(y~1, sigma.fo=~1, nu.fo=~1, family='QXGP',
              control=gamlss.control(n.cyc=5000, trace=FALSE))

# Extracting the fitted values for mu, sigma and nu
# using the inverse link function
exp(coef(mod, what='mu'))
#> (Intercept) 
#>      269437 
exp(coef(mod, what='sigma'))
#> (Intercept) 
#>    1.490796 
exp(coef(mod, what='nu'))
#> (Intercept) 
#>    2.939705 

# Example 2
# Generating random values under some model
n <- 2000
x1 <- runif(n, min=0.4, max=0.6)
x2 <- runif(n, min=0.4, max=0.6)
mu <- exp(-2.19 + 3 * x1)
sigma <- exp(1 - 2 * x2)
nu <- 1
x <- rQXGP(n=n, mu, sigma, nu)

mod <- gamlss(x~x1, sigma.fo=~x2, nu.fo=~1, family=QXGP,
              control=gamlss.control(n.cyc=5000, trace=FALSE))

coef(mod, what="mu")
#> (Intercept)          x1 
#>   -2.421042    3.494641 
coef(mod, what="sigma")
#> (Intercept)          x2 
#>    1.095616   -2.143970 
exp(coef(mod, what="nu"))
#> (Intercept) 
#>   0.9816411