Skip to contents

The Marshall-Olkin Extended Weibull family

Usage

MOEW(mu.link = "log", sigma.link = "log", nu.link = "log")

Arguments

defines the mu.link, with "log" link as the default for the mu parameter.

defines the sigma.link, with "log" link as the default for the sigma.

defines the nu.link, with "log" link as the default for the nu parameter.

Value

Returns a gamlss.family object which can be used to fit a MOEW distribution in the gamlss() function.

Details

The Marshall-Olkin Extended Weibull distribution with parameters mu, sigma and nu has density given by

\(f(x) = \frac{\mu \sigma \nu (\nu x)^{\sigma - 1} exp\{{-(\nu x )^{\sigma}}\}}{\{1-(1-\mu) exp\{{-(\nu x )^{\sigma}}\} \}^{2}},\)

for x > 0.

References

Almalki, S. J., & Nadarajah, S. (2014). Modifications of the Weibull distribution: A review. Reliability Engineering & System Safety, 124, 32-55.

Ghitany, M. E., Al-Hussaini, E. K., & Al-Jarallah, R. A. (2005). Marshall–Olkin extended Weibull distribution and its application to censored data. Journal of Applied Statistics, 32(10), 1025-1034.

See also

Author

Amylkar Urrea Montoya, amylkar.urrea@udea.edu.co

Examples

# Example 1
# Generating some random values with
# known mu, sigma and nu
y <- rMOEW(n=400, mu=0.5, sigma=0.7, nu=1)

# Fitting the model
require(gamlss)

mod <- gamlss(y~1, sigma.fo=~1, nu.fo=~1, family='MOEW',
              control=gamlss.control(n.cyc=5000, trace=FALSE))
#> Error in gamlss(y ~ 1, sigma.fo = ~1, nu.fo = ~1, family = "MOEW", control = gamlss.control(n.cyc = 5000,     trace = FALSE)): response variable out of range

# Extracting the fitted values for mu, sigma and nu
# using the inverse link function
exp(coef(mod, what='mu'))
#> Error: object 'mod' not found
exp(coef(mod, what='sigma'))
#> Error: object 'mod' not found
exp(coef(mod, what='nu'))
#> Error: object 'mod' not found

# Example 2
# Generating random values under some model
n <- 500
x1 <- runif(n, min=0.4, max=0.6)
x2 <- runif(n, min=0.4, max=0.6)
mu <- exp(-1.20 + 3 * x1)
sigma <- exp(0.84 - 2 * x2)
nu <- 1
x <- rMOEW(n=n, mu, sigma, nu)

mod <- gamlss(x~x1, sigma.fo=~x2, nu.fo=~1, family=MOEW,
              control=gamlss.control(n.cyc=5000, trace=FALSE))

coef(mod, what="mu")
#> (Intercept)          x1 
#>  -0.4955676   1.3942922 
coef(mod, what="sigma")
#> (Intercept)          x2 
#>    1.021122   -2.368124 
exp(coef(mod, what="nu"))
#> (Intercept) 
#>   0.9078116