The Marshall-Olkin Extended Inverse Weibull family
Value
Returns a gamlss.family object which can be used to fit a MOEIW distribution in the gamlss()
function.
Details
The Marshall-Olkin Extended Inverse Weibull distribution with parameters mu
,
sigma
and nu
has density given by
\(f(x) = \frac{\mu \sigma \nu x^{-(\sigma + 1)} exp\{{-\mu x^{-\sigma}}\}}{\{\nu -(\nu-1) exp\{{-\mu x ^{-\sigma}}\} \}^{2}},\)
for x > 0.
References
Okasha, H. M., El-Baz, A. H., Tarabia, A. M. K., & Basheer, A. M. (2017). Extended inverse Weibull distribution with reliability application. Journal of the Egyptian Mathematical Society, 25(3), 343-349.
Author
Amylkar Urrea Montoya, amylkar.urrea@udea.edu.co
Examples
# Example 1
# Generating some random values with
# known mu, sigma and nu
set.seed(123456)
y <- rMOEIW(n=100, mu=0.6, sigma=1.7, nu=0.3)
# Fitting the model
require(gamlss)
mod <- gamlss(y~1, sigma.fo=~1, nu.fo=~1, family="MOEIW",
control=gamlss.control(n.cyc=5000, trace=FALSE))
# Extracting the fitted values for mu, sigma and nu
# using the inverse link function
exp(coef(mod, what="mu"))
#> (Intercept)
#> 0.4336193
exp(coef(mod, what="sigma"))
#> (Intercept)
#> 1.807662
exp(coef(mod, what="nu"))
#> (Intercept)
#> 0.4693823
# Example 2
# Generating random values under some model
# A function to simulate a data set with Y ~ MOEIW
gendat <- function(n) {
x1 <- runif(n)
x2 <- runif(n)
mu <- exp(-2.02 + 3 * x1) # 0.60 approximately
sigma <- exp(2.23 - 2 * x2) # 3.42 approximately
nu <- 2
y <- rMOEIW(n=n, mu=mu, sigma=sigma, nu=nu)
data.frame(y=y, x1=x1, x2=x2)
}
set.seed(123)
dat <- gendat(n=100)
mod <- gamlss(y~x1, sigma.fo=~x2, nu.fo=~1,
family=MOEIW, data=dat,
control=gamlss.control(n.cyc=5000, trace=FALSE))
coef(mod, what="mu")
#> (Intercept) x1
#> -1.852971 2.792687
coef(mod, what="sigma")
#> (Intercept) x2
#> 2.136396 -1.811521
exp(coef(mod, what="nu"))
#> (Intercept)
#> 1.683432