The Inverse Weibull distribution
Value
Returns a gamlss.family object which can be used to fit a IW distribution in the gamlss()
function.
Details
The Inverse Weibull distribution with parameters mu
,
sigma
has density given by
\(f(x) = \mu \sigma x^{-\sigma-1} \exp(\mu x^{-\sigma})\)
for \(x > 0\), \(\mu > 0\) and \(\sigma > 0\)
References
Almalki, S. J., & Nadarajah, S. (2014). Modifications of the Weibull distribution: A review. Reliability Engineering & System Safety, 124, 32-55.
Drapella, A. (1993). The complementary Weibull distribution: unknown or just forgotten?. Quality and reliability engineering international, 9(4), 383-385.
Author
Johan David Marin Benjumea, johand.marin@udea.edu.co
Examples
# Example 1
# Generating some random values with
# known mu and sigma
y <- rIW(n=100, mu=5, sigma=2.5)
# Fitting the model
require(gamlss)
mod <- gamlss(y~1, mu.fo=~1, sigma.fo=~1, family='IW',
control=gamlss.control(n.cyc=5000, trace=FALSE))
# Extracting the fitted values for mu, sigma and nu
# using the inverse link function
exp(coef(mod, what='mu'))
#> (Intercept)
#> 4.030121
exp(coef(mod, what='sigma'))
#> (Intercept)
#> 2.375744
# Example 2
# Generating random values under some model
n <- 200
x1 <- rpois(n, lambda=2)
x2 <- runif(n)
mu <- exp(2 + -1 * x1)
sigma <- exp(2 - 2 * x2)
x <- rIW(n=n, mu, sigma)
mod <- gamlss(x~x1, mu.fo=~1, sigma.fo=~x2, family=IW,
control=gamlss.control(n.cyc=5000, trace=FALSE))
coef(mod, what="mu")
#> (Intercept) x1
#> 2.311472 -1.155356
coef(mod, what="sigma")
#> (Intercept) x2
#> 1.974543 -1.855939