Skip to contents

The Extended Odd Frechet-Nadarjad-Hanhighi family

Usage

EOFNH(mu.link = "log", sigma.link = "log", nu.link = "log", tau.link = "log")

Arguments

defines the mu.link, with "log" link as the default for the mu parameter.

defines the sigma.link, with "log" link as the default for the sigma.

defines the nu.link, with "log" link as the default for the nu parameter.

defines the tau.link, with "log" link as the default for the tau parameter.

Value

Returns a gamlss.family object which can be used to fit a EOFNH distribution in the gamlss() function.

Details

The Extended Odd Frechet-Nadarajah-Haghighi distribution with parameters mu, sigma, nu and tau has density given by

\(f(x)= \frac{\mu\sigma\nu\tau(1+\nu x)^{\sigma-1}e^{(1-(1+\nu x)^\sigma)}[1-(1-e^{(1-(1+\nu x)^\sigma)})^{\mu}]^{\tau-1}}{(1-e^{(1-(1+\nu x)^{\sigma})})^{\mu\tau+1}} e^{-[(1-e^{(1-(1+\nu x)^\sigma)})^{-\mu}-1]^{\tau}},\)

for \(x > 0\), \(\mu > 0\), \(\sigma > 0\), \(\nu > 0\) and \(\tau > 0\).

References

Nasiru, S. (2018). Extended Odd Fréchet‐G Family of Distributions Journal of Probability and Statistics, 2018(1), 2931326.

See also

Author

Helber Santiago Padilla, hspadillar@unal.edu.co

Examples

# Example 1
# Generating some random values with
# known mu, sigma, nu and tau
set.seed(123)
y <- rEOFNH(n=100, mu=1, sigma=2.1, nu=0.8, tau=1)

# Fitting the model
require(gamlss)

mod <- gamlss(y~1, sigma.fo=~1, nu.fo=~1, tau.fo=~1, family=EOFNH,
              control=gamlss.control(n.cyc=5000, trace=FALSE))

# Extracting the fitted values for mu, sigma, nu and tau
# using the inverse link function
exp(coef(mod, what="mu"))
#> (Intercept) 
#>   0.9036802 
exp(coef(mod, what="sigma"))
#> (Intercept) 
#>     2.55407 
exp(coef(mod, what="nu"))
#> (Intercept) 
#>   0.5872532 
exp(coef(mod, what="tau"))
#> (Intercept) 
#>    1.075305 

# Example 2
# Generating random values under the model
n <- 100
x1 <- runif(n)
x2 <- runif(n)
mu <- exp(0.5 - 1.2 * x1)
sigma <- 2.1
nu <- 0.8
tau <- 1
y <- rEOFNH(n=n, mu, sigma, nu, tau)

mod <- gamlss(y~x1, sigma.fo=~1, nu.fo=~1, tau.fo=~1, family=EOFNH,
              control=gamlss.control(n.cyc=5000, trace=FALSE))

coef(mod, what="mu")
#> (Intercept)          x1 
#>  0.05375426 -0.99943981 
exp(coef(mod, what="sigma"))
#> (Intercept) 
#>    1.330352 
exp(coef(mod, what="nu"))
#> (Intercept) 
#>   0.9497364 
exp(coef(mod, what="tau"))
#> (Intercept) 
#>    1.382512