Skip to contents

The Exponentiated Modifien Weibull Extension family

Usage

EMWEx(mu.link = "log", sigma.link = "log", nu.link = "log", tau.link = "log")

Arguments

defines the mu.link, with "log" link as the default for the mu parameter.

defines the sigma.link, with "log" link as the default for the sigma.

defines the nu.link, with "log" link as the default for the nu parameter.

defines the tau.link, with "log" link as the default for the tau parameter.

Value

Returns a gamlss.family object which can be used to fit a EMWEx distribution in the gamlss() function.

Details

The Beta-Weibull distribution with parameters mu, sigma, nu and tau has density given by

\(f(x)= \nu \sigma \tau (\frac{x}{\mu})^{\sigma-1} \exp((\frac{x}{\mu})^\sigma + \nu \mu (1- \exp((\frac{x}{\mu})^\sigma))) (1 - \exp (\nu\mu (1- \exp((\frac{x}{\mu})^\sigma))))^{\tau-1} ,\)

for \(x > 0\), \(\nu> 0\), \(\mu > 0\), \(\sigma> 0\) and \(\tau > 0\).

References

Almalki, S. J., & Nadarajah, S. (2014). Modifications of the Weibull distribution: A review. Reliability Engineering & System Safety, 124, 32-55.

Sarhan, A. M., & Apaloo, J. (2013). Exponentiated modified Weibull extension distribution. Reliability Engineering & System Safety, 112, 137-144.

See also

Author

Johan David Marin Benjumea, johand.marin@udea.edu.co

Examples

# Example 1
# Generating some random values with
# known mu, sigma, nu and tau
y <- rEMWEx(n=100, mu = 1, sigma =1.21, nu=1, tau=2)

# Fitting the model
require(gamlss)

mod <- gamlss(y~1, sigma.fo=~1, nu.fo=~1, tau.fo=~1, family=EMWEx,
              control=gamlss.control(n.cyc=5000, trace=FALSE))

# Extracting the fitted values for mu, sigma, nu and tau
# using the inverse link function
exp(coef(mod, what='mu'))
#> (Intercept) 
#>    1.348076 
exp(coef(mod, what='sigma'))
#> (Intercept) 
#>    2.129508 
exp(coef(mod, what='nu'))
#> (Intercept) 
#>   0.9224002 
exp(coef(mod, what='tau'))
#> (Intercept) 
#>   0.9393789 

# Example 2
# Generating random values under some model
n <- 200
x1 <- runif(n, min=0.4, max=0.6)
x2 <- runif(n, min=0.4, max=0.6)
mu <- exp(0.75 - x1)
sigma <- exp(0.5 - x2)
nu <- 1
tau <- 2
x <- rEMWEx(n=n, mu, sigma, nu, tau)

mod <- gamlss(x~x1, sigma.fo=~x2, nu.fo=~1, tau.fo=~1, family=EMWEx,
              control=gamlss.control(n.cyc=5000, trace=FALSE))

coef(mod, what="mu")
#> (Intercept)          x1 
#>   0.5439596  -1.1981174 
coef(mod, what="sigma")
#> (Intercept)          x2 
#>    1.106044   -2.323641 
exp(coef(mod, what="nu"))
#> (Intercept) 
#>   0.8843647 
exp(coef(mod, what="tau"))
#> (Intercept) 
#>    2.327184